43 resultados para Space objects
Resumo:
Pulsed electroacoustic (PEA) method is a commonly used non-destructive technique for investigating space charges. It has been developed since early 1980s. These days there is continuing interest for better understanding of the influence of space charge on the reliability of solid electrical insulation under high electric field. The PEA method is widely used for space charge profiling for its robust and relatively inexpensive features. The PEA technique relies on a voltage impulse used to temporarily disturb the space charge equilibrium in a dielectric. The acoustic wave is generated by charge movement in the sample and detected by means of a piezoelectric film. The spatial distribution of the space charge is contained within the detected signal. The principle of such a system is already well established, and several kinds of setups have been constructed for different measurement needs. This thesis presents the design of a PEA measurement system as a systems engineering project. The operating principle and some recent developments are summarised. The steps of electrical and mechanical design of the instrument are discussed. A common procedure for measuring space charges is explained and applied to verify the functionality of the system. The measurement system is provided as an additional basic research tool for the Corporate Research Centre of ABB (China) Ltd. It can be used to characterise flat samples with thickness of 0.2–0.5 mm under DC stress. The spatial resolution of the measurement is 20 μm.
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
This thesis addresses the use of covariant phase space observables in quantum tomography. Necessary and sufficient conditions for the informational completeness of covariant phase space observables are proved, and some state reconstruction formulae are derived. Different measurement schemes for measuring phase space observables are considered. Special emphasis is given to the quantum optical eight-port homodyne detection scheme and, in particular, on the effect of non-unit detector efficiencies on the measured observable. It is shown that the informational completeness of the observable does not depend on the efficiencies. As a related problem, the possibility of reconstructing the position and momentum distributions from the marginal statistics of a phase space observable is considered. It is shown that informational completeness for the phase space observable is neither necessary nor sufficient for this procedure. Two methods for determining the distributions from the marginal statistics are presented. Finally, two alternative methods for determining the state are considered. Some of their shortcomings when compared to the phase space method are discussed.
Resumo:
Teemanumero 1/2011 : Kauhut ja pelot.
Resumo:
The dissertation ´I knit, therefore I am!´ Learning and identity in informal space has two main purposes. The first purpose being an investigation of how new value attributions and thinking can generate novel and usable knowledge to the field of craftsmanship, and the second purpose being a display of a different and overlooked philosophical and cultural potential in a reflexive mode of expression, which is able to reflect the normative comprehension of craftsmanship. The dissertation focuses on learning and identity in informal spaces of learning and how it is possible to relate such a learning perspective to crafts training in educational establishments. The empirical foundation of this dissertation is ‘craftivism’. In the dissertation activists from the Nordic countries have been interviewed about what they do when they put up their textile graffiti on lamp posts and house walls. Three research problems are presented: 1) What stories do people who work as crafts activists, tell about ways of relating and methods of action when they make crafts? 2) What do these stories tell about learning and identity? 3) How may the research results influence training and education in craftsmanship? These questions are being asked in order to acquire new knowledge in two aspects; first aspect being knowledge about crafts in relation to techniques, tradition and the objects in crafts, and the second aspect being knowledge about learning and identity in informal spaces of learning. The dissertations theoretical foundation is post structural and sociocultural combined with hermeneutical-inspired qualitative interviews. The author’s position and pre-understanding is subject to discussion in relation to the informant; the performing activist, as the background for both of them is craftsmanship. Starting from cultural studies, it is possible to see the activist subject’s conditions of possibilities in the culture, as the activism of the sub-cultural phenomenon’s craft lights up through a performing approach to the individual’s actions. First the research material has been analysed for events of textile graffiti and possible themes in the events, after which the results have been summarised. Next the research material has been analysed for events about learning and identity due to the author’s wish of comprehending the background of and motivational force in activism. The analysis is divided in main perspectives with different dimensions. The results of the analysis show the activist subject’s construction of an individual who actively takes part in a community by e.g. creating joy, changing the world’s perception of sustainability or by feminizing the public space. By taking crafts over the borders (and away from the class room) crafts become contextualized in a novel fashion thus obtaining an independent status. In this fashion the dissertation writes itself into a new method of comprehending and performing traditional craftsmanship techniques.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
Technological developments in microprocessors and ICT landscape have made a shift to a new era where computing power is embedded in numerous small distributed objects and devices in our everyday lives. These small computing devices are ne-tuned to perform a particular task and are increasingly reaching our society at every level. For example, home appliances such as programmable washing machines, microwave ovens etc., employ several sensors to improve performance and convenience. Similarly, cars have on-board computers that use information from many di erent sensors to control things such as fuel injectors, spark plug etc., to perform their tasks e ciently. These individual devices make life easy by helping in taking decisions and removing the burden from their users. All these objects and devices obtain some piece of information about the physical environment. Each of these devices is an island with no proper connectivity and information sharing between each other. Sharing of information between these heterogeneous devices could enable a whole new universe of innovative and intelligent applications. The information sharing between the devices is a diffcult task due to the heterogeneity and interoperability of devices. Smart Space vision is to overcome these issues of heterogeneity and interoperability so that the devices can understand each other and utilize services of each other by information sharing. This enables innovative local mashup applications based on shared data between heterogeneous devices. Smart homes are one such example of Smart Spaces which facilitate to bring the health care system to the patient, by intelligent interconnection of resources and their collective behavior, as opposed to bringing the patient into the health system. In addition, the use of mobile handheld devices has risen at a tremendous rate during the last few years and they have become an essential part of everyday life. Mobile phones o er a wide range of different services to their users including text and multimedia messages, Internet, audio, video, email applications and most recently TV services. The interactive TV provides a variety of applications for the viewers. The combination of interactive TV and the Smart Spaces could give innovative applications that are personalized, context-aware, ubiquitous and intelligent by enabling heterogeneous systems to collaborate each other by sharing information between them. There are many challenges in designing the frameworks and application development tools for rapid and easy development of these applications. The research work presented in this thesis addresses these issues. The original publications presented in the second part of this thesis propose architectures and methodologies for interactive and context-aware applications, and tools for the development of these applications. We demonstrated the suitability of our ontology-driven application development tools and rule basedapproach for the development of dynamic, context-aware ubiquitous iTV applications.
Resumo:
This study examines the structure of the Russian Reflexive Marker ( ся/-сь) and offers a usage-based model building on Construction Grammar and a probabilistic view of linguistic structure. Traditionally, reflexive verbs are accounted for relative to non-reflexive verbs. These accounts assume that linguistic structures emerge as pairs. Furthermore, these accounts assume directionality where the semantics and structure of a reflexive verb can be derived from the non-reflexive verb. However, this directionality does not necessarily hold diachronically. Additionally, the semantics and the patterns associated with a particular reflexive verb are not always shared with the non-reflexive verb. Thus, a model is proposed that can accommodate the traditional pairs as well as for the possible deviations without postulating different systems. A random sample of 2000 instances marked with the Reflexive Marker was extracted from the Russian National Corpus and the sample used in this study contains 819 unique reflexive verbs. This study moves away from the traditional pair account and introduces the concept of Neighbor Verb. A neighbor verb exists for a reflexive verb if they share the same phonological form excluding the Reflexive Marker. It is claimed here that the Reflexive Marker constitutes a system in Russian and the relation between the reflexive and neighbor verbs constitutes a cross-paradigmatic relation. Furthermore, the relation between the reflexive and the neighbor verb is argued to be of symbolic connectivity rather than directionality. Effectively, the relation holding between particular instantiations can vary. The theoretical basis of the present study builds on this assumption. Several new variables are examined in order to systematically model variability of this symbolic connectivity, specifically the degree and strength of connectivity between items. In usage-based models, the lexicon does not constitute an unstructured list of items. Instead, items are assumed to be interconnected in a network. This interconnectedness is defined as Neighborhood in this study. Additionally, each verb carves its own niche within the Neighborhood and this interconnectedness is modeled through rhyme verbs constituting the degree of connectivity of a particular verb in the lexicon. The second component of the degree of connectivity concerns the status of a particular verb relative to its rhyme verbs. The connectivity within the neighborhood of a particular verb varies and this variability is quantified by using the Levenshtein distance. The second property of the lexical network is the strength of connectivity between items. Frequency of use has been one of the primary variables in functional linguistics used to probe this. In addition, a new variable called Constructional Entropy is introduced in this study building on information theory. It is a quantification of the amount of information carried by a particular reflexive verb in one or more argument constructions. The results of the lexical connectivity indicate that the reflexive verbs have statistically greater neighborhood distances than the neighbor verbs. This distributional property can be used to motivate the traditional observation that the reflexive verbs tend to have idiosyncratic properties. A set of argument constructions, generalizations over usage patterns, are proposed for the reflexive verbs in this study. In addition to the variables associated with the lexical connectivity, a number of variables proposed in the literature are explored and used as predictors in the model. The second part of this study introduces the use of a machine learning algorithm called Random Forests. The performance of the model indicates that it is capable, up to a degree, of disambiguating the proposed argument construction types of the Russian Reflexive Marker. Additionally, a global ranking of the predictors used in the model is offered. Finally, most construction grammars assume that argument construction form a network structure. A new method is proposed that establishes generalization over the argument constructions referred to as Linking Construction. In sum, this study explores the structural properties of the Russian Reflexive Marker and a new model is set forth that can accommodate both the traditional pairs and potential deviations from it in a principled manner.
Resumo:
InsomniaGame oli Turun yliopiston digitaalisen kulttuurin oppiaineen ja Insomnia verkkopeliyhdistyksen yhteistyössä vuosina 2010 ja 2011 toteuttama pelikonseptikokeilu. InsomniaGame oli osa laajempaa ”CoEx: Yhteisöllistä tekemistä tukevat tilat kokemusten jakamisessa” kaksivuotista (1.10.2009–31.12.2011) hanketta, jonka toteuttivat yhteistyössä Turun yliopiston Porin yksikkö, Tampereen teknillisen yliopiston Porin yksikkö ja Tampereen yliopisto. Hankkeen tavoitteena oli toteuttaa sosiaalista mediaa, yhteisöllisyyttä ja lisättyä todellisuutta hyödyntäviä virtuaalisia ja julkisia tiloja, joissa käyttäjät voivat jakaa kokemuksia. Tutkimus on luonteeltaan soveltava pro gradu -tutkielma, joka sisältää kaksi vuotta kestäneen ja kaksi pelisovellusta sisältävän työosuuden. InsomniaGame koostui erilaisista pelaajien suorittamista tehtävistä, pelialustasta sekä taustatarinasta. Päätutkimuskysymykset ovat: Mitkä tekijät vaikuttivat pelisuunnitteluprosessiin ja miten? Työ esittelee InsomniaGame-pelin kehityksen. Erityistarkastelussa ovat suunnitteluprosessin ja pelin sisällölliset muutokset sekä niihin vaikuttaneet tekijät. Pelin kehitys perustui pääasiassa erilaisiin dokumentteihin, joita käytettiin suunnittelun apuvälineenä sekä viestinnässä projektin eri toimijoiden kesken. Tutkimus pyrkii syntyneiden dokumenttien sekä pelisuunnittelijoiden muistin perusteella rekonstruoimaan InsomniaGame-pelisovelluksen kehityskaaren. InsomniaGamen kehityksessä oli monia tekijöitä, jotka muuttuivat sen kehityskaaren aikana. Itse pelin sisältö, kuten myös suunnittelutapa, muuttuivat kahden vuoden aikana huomattavasti. Pelillä oli myös monia erityispiirteitä, jotka tekevät sen kehityksestä ainutlaatuisen, sillä esimerkiksi pelin testaaminen yhtenä kokonaisuutena oli mahdotonta. Lisäksi peli oli tutkimus- ja yhteistyöprojekti, jossa oli mukana monia eri toimijoita ja erityisesti tutkimuksessa korostuu yhteistyökumppani Insomnia verkkopeliyhdistyksen osallisuus. InsomniaGamen kummankaan vuoden toteutus ei sujunut odotetulla tavalla, mikä osaltaan vaikutti etenkin jälkimmäisen vuoden pelin suunnitteluun. Varsinainen suunnittelutyö kuitenkin eteni ensimmäisenä vuonna käytetyn mallin mukaisesti, mutta kuitenkin niin että alkuperäiset oletukset pelisuunnittelusta ja lopputuloksesta muuttuivat. Tämän vuoksi peliprojektia voi paikoitellen luonnehtia jopa kaoottiseksi, ja erityisesti toteutusvaiheessa jouduttiin luomaan nopealla aikataululla uusia toimintamalleja. Työ toimii mallina tuleville peliprojekteille, mutta erityisen tärkeää olisi luoda yhtenäinen kehitysalusta vastaavanlaisia projekteja varten.
Resumo:
Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.
Resumo:
The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.
Resumo:
Sloyd as an activity concretizes man’s ability to, with the help of mind and body, reshape materials into objects and change her conditions for survival. The sloyd actor outside school works when the spirit moves her, while the pupil in school is expected to sloyd regardless of motivation. Subject teachers become experts on sloyd in educational settings, while the qualification requirements may set the class teachers’ voluntariness within parenthesis. All class teachers qualify to teach all core subjects of the national curriculum in Finland from preschool to grade six. The aim of the current thesis is to deepen the knowledge on how the science of sloyd education can support class teacher students’ future teaching in sloyd. In the empirical part of the study, Swedish-speaking Finnish class teacher students’ views on technical sloyd as one of their future subjects for teaching are examined. The class teacher’s qualifying skills in teaching technical sloyd are expected to take shape during only a few ECTS study points. The teacher students’ experience of the subject from the pupil’s perspective is supposed to move into a budding teacher subject. In a research-based teacher education, self-reflection and reflection as a dialogue are extended aided by research results. Intuitive thinking interplays with rational thinking during this time. The teacher student’s approach to make use of the autonomous free space in teaching is, in the current thesis, as considerations where the individual weighs the pros and cons in relation to various phenomena in sloyd and the school overall. The basis for an individual autonomy is shaped and is expected to interplay on the common arena of autonomy. In the exercise of their profession, the class teacher teaching sloyd is expected to oscillate between the sloyd educational practice and theory. The first step in this movement within the teacher education is the coverage of a selection of theories during the studies. The empirical part of the study is carried out at two separate occasions with directed open-ended interviews with fifteen class teacher students in the beginning and end of their first year of study. The data was analysed with a hermeneutic approach and a qualitatively oriented approach to content analysis. The results are mirrored against theory within the science of sloyd education. The results show that class teacher students have a versatile view of educational sloyd. The overall results overthrow parts of the researcher’s pre-understanding. The viewpoint of the students seems to broaden from a merely manual activity to seeing sloyd as an educational activity. In order for the results to gain significance in the teacher education of the future, a line of reasoning is conducted in order to recommend an extended dialogue and thirteen possible themes for enriching discussions are put forth as a result of the present study. The extended dialogue focuses on that teacher education should make conscious ventures to create opportunities for the students to take part in effective discussions on the subject of sloyd, complementing the existing dialogue between the teacher educator and the students. This thesis lends support to reflections on the following aspects of educational sloyd in these dialogues: the reasons for why the sloyd subject exists, the ambitions of the subject, the content and organization of the subject for students as well as for the teacher educators.
Resumo:
Työn tavoitteena oli kehittää kanavistojen ja kattilan eristyksien mallintamista 3D-laitossuunitteluohjelmassa sekä siitä saatavia materiaalilistoja. Kanavistojen eristeitä kuvastavaa geometriaa muokattiin vastaamaan eristyksen todellista tilanvarausta. Kattilan eristyksen mallintaminen on aikaisemmin jouduttu tekemään manuaalisesti, työssä kehitettiin työkalu, jonka avulla eristysten materiaalitiedot ja oikeat tilanvaraukset saadaan lisättyä 3D-malliin. Kaikkia eristyksen mallintamista ei kuitenkaan pystytä mielekkäästi toteuttamaan automaattisesti työkalujen avulla, näitä kohteita ovat tukikehikkorakenteet kuten kattilan vinttikehikko. Lisäksi täytyi selvittää, mitä tietoja eristyksien materiaalimäärälistoille vaaditaan, ja kuinka nämä tiedot saataisiin listoihin mukaan. Jotta kaikki eristettävät kohteet saadaan tuotettaviin materiaalilistoihin, on ohjelmaan lisättävä käytettäväksi uusia komponentteja. Näitä ovat uudet kanavistojen osat sekä muun muassa venturit ja huoltoluukut kanavistoille. Kattilaan asennettavat laitteet kuten näkölasit ja polttimet vaativat tukirakenteen, joka samalla toimii kotelona putkistojen taivutuksille. Näitä kohteita on aikaisemmin tuotu vanhoista projekteista tai ne on tehty suunnittelijan toimesta uusiksi. Työssä esitettiin uusi tapa mallintaa kattilan pinnat, jolloin niihin voidaan liittää koteloita erillisestä komponenttikirjastosta. Kanavistojen eristyksien materiaalimäärälistojen tuottaminen suoraan ohjelmasta auto-matisoitiin. Kattilan ja siihen liittyvien eristyskehysrakenteiden listojen tuotanto kuitenkin vaatii yhteisten toimintamallien kehittämistä. Tämän työn uudet menetelmät mahdollistavat yhä uusien työkalujen kehittämisen, esimerkiksi automaattisen eristysten teknisten piirustusten kuvatuotannon tulevaisuudessa.
Resumo:
Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.
Resumo:
This thesis presents a framework for segmentation of clustered overlapping convex objects. The proposed approach is based on a three-step framework in which the tasks of seed point extraction, contour evidence extraction, and contour estimation are addressed. The state-of-art techniques for each step were studied and evaluated using synthetic and real microscopic image data. According to obtained evaluation results, a method combining the best performers in each step was presented. In the proposed method, Fast Radial Symmetry transform, edge-to-marker association algorithm and ellipse fitting are employed for seed point extraction, contour evidence extraction and contour estimation respectively. Using synthetic and real image data, the proposed method was evaluated and compared with two competing methods and the results showed a promising improvement over the competing methods, with high segmentation and size distribution estimation accuracy.