23 resultados para Sewage disposal plants -- Computer simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiostereometric analysis (RSA) is a highly accurate method for the measurement of in vivo micromotion of orthopaedic implants. Validation of the RSA method is a prerequisite for performing clinical RSA studies. Only a limited number of studies have utilised the RSA method in the evaluation of migration and inducible micromotion during fracture healing. Volar plate fixation of distal radial fractures has increased in popularity. There is still very little prospective randomised evidence supporting the use of these implants over other treatments. The aim of this study was to investigate the precision, accuracy, and feasibility of using RSA in the evaluation of healing in distal radius fractures treated with a volar fixed-angle plate. A physical phantom model was used to validate the RSA method for simple distal radius fractures. A computer simulation model was then used to validate the RSA method for more complex interfragmentary motion in intra-articular fractures. A separate pre-clinical investigation was performed in order to evaluate the possibility of using novel resorbable markers for RSA. Based on the validation studies, a prospective RSA cohort study of fifteen patients with plated AO type-C distal radius fractures with a 1-year follow-up was performed. RSA was shown to be highly accurate and precise in the measurement of fracture micromotion using both physical and computer simulated models of distal radius fractures. Resorbable RSA markers demonstrated potential for use in RSA. The RSA method was found to have a high clinical precision. The fractures underwent significant translational and rotational migration during the first two weeks after surgery, but not thereafter. Maximal grip caused significant translational and rotational interfragmentary micromotion. This inducible micromotion was detectable up to eighteen weeks, even after the achievement of radiographic union. The application of RSA in the measurement of fracture fragment migration and inducible interfragmentary micromotion in AO type-C distal radius fractures is feasible but technically demanding. RSA may be a unique tool in defining the progress of fracture union.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is devoted to the study of the dynamical and structural properties of dendrimers. Different approaches were used: analytical theory, computer simulation results and experimental NMR studies. The theory of the relaxation spectrum of dendrimer macromolecules was developed. Relaxation processes which are manifest in the local orientational mobility of dendrimer macromolecules were established and studied in detail. Theoretical results and conclusions were used for experimental studies of carbosilane dendimers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic structure of ZrO2 and B2O3 was investigated in this work. New data under extreme conditions (T = 3100 K) was obtained for the liquid ZrO2 structure. A fractional number of boron was investigated for glassy structure of B2O3. It was shown that it is possible to obtain an agreement for the fractional number between NMR and DFT techniques using a suitable initial configuration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä diplomityössä käsitellään sorvauksen työstövärähtelyjen ja sorvin keskiökärjen rakenteen yhteyttä. Työ on osa Lappeenrannan teknillisen yliopiston VMAX-projektia, ja sen taustalla on pyrkimys uudenlaisen, sorvin kärkipylkän puristusvoiman ajonaikaiseen säätämiseen perustuvan työstövärähtelyjen välttämismenetelmän kehittämiseen. Tämän menetelmän toiminnan todentaminen oli työn ensimmäinen tavoite. Menetelmän toteuttaminen asettaa kuitenkin käytetyn keskiökärjen rakenteelle tiettyjä vaatimuksia. Työn toisena tavoitteena oli nämä vaatimukset täyttävän keskiökärjen prototyypin kehittäminen. Tutkimus eteni seuraavasti. Ensimmäiseksi ongelma määriteltiin tutustumalla työn teoreettiseen taustaan ja aiheeseen liittyvään tutkimukseen Lappeenrannan teknillisestä yliopistosta ja muualta. Myös keskiökärkiä valmistavien yritysten tuotekatalogeja tarkasteltiin. Seuraavaksi siirryttiin alustavaan suunnitteluvaiheeseen, jossa verifioitiin menetelmän toiminta ja luotiin konsepteja keskiökärjen rakenteen kehittämistä varten. Tämän alustavan vaiheen jälkeen suoritettiin suunnitteluprosessi keskiökärjen prototyypille. Lopuksi, suunnitellun prototyypin rakenteen käyttäytymistä arvioitiin tietokonemallinnuksen avulla. Lisätuloksena tutkimuksen aikana johdettiin yksinkertaistettu elementtimenetelmään perustuva laskentamalli järjestelmän ominaistaajuuksien selvittämiseksi. Laskentamallin tarkkuutta arvoitiin. Suunnitteluprosessin tuloksena saatiin kaikki menetelmän toiminnan sekä normaalin käytön asettamat vaatimukset täyttävä rakenne keskiökärjen prototyypille. Myös johdetun laskentamallin tulokset ovat varsin lähellä 3D-elementtimallinnuksen antamia tuloksia. Tutkimuksen tavoitteiden voidaan siis sanoa toteutuneen. Koska prototyyppiä ja laskentamallia ei kuitenkaan ole vielä kokeellisesti verifioitu, tämä ei ole täysin varmaa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this study was to describe and evaluate nursing students' learning about an empowering discourse in patient education. In Phase 1, the purpose was to describe an empowering discourse between a nurse and a patient. In Phase 2, the purpose was first to create a computer simulation program of an empowering discourse based on the description, and second, the purpose was to evaluate nursing students’ learning of how to conduct an empowering discourse using a computer simulation program. The ultimate goal was to strengthen the knowledge basis on empowering discourse and to develop nursing students’ knowledge about how to conduct an empowering discourse for the development of patient education. In Phase I, empowering discourse was described using a systematic literature review with a metasummary technique (n=15). Data were collected covering a period from January 1995 to October 2005. In Phase 2, the computer simulation program of empowering discourse was created based the description in 2006–2007. A descriptive comparative design was used to evaluate students’ (n=69) process of learning empowering discourse using the computer simulation program and a pretest–post-test design without a control group was used to evaluate students’ (n=43) outcomes of learning. Data were collected in 2007. Empowering discourse was a structured process and it was possible to simulate and learned with the computer simulation program. According to students’ knowledge, empowering discourse was an unstructured process. Process of learning empowering discourse using the computer simulation program was controlled by the students and it changed students’ knowledge. The outcomes of learning empowering discourse appeared as changes of students’ knowledge to more holistic and better-organized or only to more holistic or better-organized. The study strengthened knowledge base of empowering discourse and developed students to more knowledgeable in empowering discourse.