57 resultados para SUCTION OF SOLID PARTICLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dewatering of iron ore concentrates requires large capacity in addition to producing a cake with low moisture content. Such large processes are commonly energy intensive and means to lower the specific energy consumption are needed. Ceramic capillary action disc filters incorporate a novel filter medium enabling the harnessing of capillary action, which results in decreased energy consumption in comparison to traditional filtration technologies. As another benefit, the filter medium is mechanically and chemically more durable than, for example, filter cloths and can, thus, withstand harsh operating conditions and possible regeneration better than other types of filter media. In iron ore dewatering, the regeneration of the filter medium is done through a combination of several techniques: (1) backwashing, (2) ultrasonic cleaning, and (3) acid regeneration. Although it is commonly acknowledged that the filter medium is affected by slurry particles and extraneous compounds, published research, especially in the field of dewatering of mineral concentrates, is scarce. Whereas the regenerative effect of backwashing and ultrasound are more or less mechanical, regeneration with acids is based on chemistry. The chemistry behind the acid regeneration is, naturally, dissolution. The dissolution of iron oxide particles has been extensively studied over several decades but those studies may not necessarily be directly applicable in the regeneration of the filter medium which has undergone interactions with the slurry components. The aim of this thesis was to investigate if free particle dissolution indeed correlates with the regeneration of the filter medium. For this purpose, both free particle dissolution and dissolution of surface adhered particles were studied. The focus was on acidic dissolution of iron oxide particles and on the study of the ceramic filter medium used in the dewatering of iron ore concentrates. The free particle dissolution experiments show that the solubility of synthetic fine grained iron oxide particles in oxalic acid could be explained through linear models accounting for the effects of temperature and acid concentration, whereas the dissolution of a natural magnetite is not so easily explained by such models. In addition, the kinetic experiments performed both support and contradict the work of previous authors: the suitable kinetic model here supports previous research suggesting solid state reduction to be the reaction mechanism of hematite dissolution but the formation of a stable iron oxalate is not supported by the results of this research. Several other dissolution mechanisms have also been suggested for iron oxide dissolution in oxalic acid, indicating that the details of oxalate promoted reductive dissolution are not yet agreed and, in this respect, this research offers added value to the community. The results of the regeneration experiments with the ceramic filter media show that oxalic acid is highly effective in removing iron oxide particles from the surface of the filter medium. The dissolution of those particles did not, however, exhibit the expected behaviour, i.e. complete dissolution. The results of this thesis show that although the regeneration of the ceramic filter medium with acids incorporates the dissolution of slurry particles from the surface of the filter medium, the regeneration cannot be assessed purely based upon free particle dissolution. A steady state, dependent on temperature and on the acid concentration, was observed in the dissolution of particles from the surface even though the limit of solubility of free iron oxide particles had not been reached. Both the regeneration capacity and efficiency, with regards to the removal of iron oxide particles, was found to be temperature dependent, but was not affected by the acid concentration. This observation further suggests that the removal of the surface adhered particles does not follow the dissolution of free particles, which do exhibit a dependency on the acid concentration. In addition, changes in the permeability and in the pore structure of the filter medium were still observed after the bulk concentration of dissolved iron had reached a steady state. Consequently, the regeneration of the filter medium continued after the dissolution of particles from the surface had ceased. This observation suggests that internal changes take place at the final stages of regeneration. The regeneration process could, in theory, be divided into two, possibly overlapping, stages: (1) dissolution of surface-adhered particles, and (2) dissolution of extraneous compounds from within the pore structure. In addition to the fundamental knowledge generated during this thesis, tools to assess the effects of parameters on the regeneration of the ceramic filter medium are needed. It has become clear that the same tools used to estimate the dissolution of free particles cannot be used to estimate the regeneration of a filter medium unless only a robust characterisation of the order of regeneration efficiency is needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidized starch is a key component in the paper industry, where it is used as both surfacing sizer and filler. Large quantities are annually used for this purpose; however, the methods for the oxidation are not environmentally friendly. In our research, we have studied the possibility to replace the harmful oxidation agents, such as hypochlorite or iodates and transition metal catalysts, with a more environmentally friendly oxidant, hydrogen peroxide (H2O2), and a special metal complex catalyst (FePcS), of which only a small amount is needed. The work comprised batch and semi-batch studies by H2O2, ultrasound studies of starch particles, determination of low-molecular by-products and determination of the decomposition kinetics of H2O2 in the presence of starch and the catalyst. This resulted in a waste-free oxidation method, which only produces water and oxygen as side products. The starch oxidation was studied in both semi-batch and batch modes in respective to the oxidant (H2O2) addition. The semi-batch mode proved to yield a sufficient degree of substitution (COOH groups) for industrial purposes. Treatment of starch granules by ultrasound was found to improve the reactivity of starch. The kinetic results were found out to have a rather complex pattern – several oxidation phases were observed, apparently due to the fact that the oxidation reaction in the beginning only took place on the surface, whereas after a prolonged reaction time, partial degradation of the solid starch granules allowed further reaction in the interior parts. Batch-mode experiments enabled a more detailed study of the mechanisms of starch in the presence of H2O2 and the catalyst, but yielded less oxidized starch due to rapid decomposition of H2O2 due to its high concentrations. The effect of the solid-liquid (S/L) ratio in the reaction system was studied in batch experiments. These studies revealed that the presence of the catalyst and the starch enhance the H2O2 decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research work, the aim was to investigate the volumetric mass transfer coefficient [kLa] of oxygen in stirred tank in the presence of solid particle experimentally. The kLa correlations as a function of propeller rotation speed and flow rate of gas feed were studied. The O2 and CO2 absorption in water and in solid-liquid suspensions and heterogeneous precipitation of MgCO3 were thoroughly examined. The absorption experiments of oxygen were conducted in various systems like pure water and in aqueous suspensions of quartz and calcium carbonate particles. Secondly, the precipitation kinetics of magnesium carbonate was also investigated. The experiments were performed to study the reactive crystallization with magnesium hydroxide slurry and carbon dioxide gas by varying the feed rates of carbon dioxide and rotation speeds of mixer. The results of absorption and precipitation are evaluated by titration, total carbon (TC analysis), and ionic chromatrography (IC). For calcium carbonate, the particle concentration was varied from 17.4 g to 2382 g with two size fractions: 5 µm and 45-63 µm sieves. The kLa and P/V values of 17.4 g CaCO3 with particle size of 5µm and 45-63 µm were 0.016 s-1 and 2400 W/m3. At 69.9 g concentration of CaCO3, the achieved kLa is 0.014 s-1 with particle size of 5 µm and 0.017 s-1 with particle size of 45 to 63 µm. Further increase in concentration of calcium carbonate, i.e. 870g and 2382g , does not affect volumetric mass transfer coeffienct of oxygen. It could be concluded from absorption results that maximum value of kLa is 0.016 s-1. Also particle size and concentration does affect the transfer rate to some extend. For precipitation experiments, the constant concentration of Mg(OH)2 was 100 g and the rotation speed varied from 560 to 750 rpm, whereas the used feed rates of CO2 were 1 and 9 L/min. At 560 rpm and feed rate of CO2 is 1 L/min, the maximum value of Mg ion and TC were 0.25 mol/litre and 0.12 mol/litre with the residence time of 40 min. When flow rate of CO2 increased to 9 L/min with same 560 rpm, the achieved value of Mg and TC were 0.3 mol/litre and 0.12 mol/L with shorter residence time of 30 min. It is concluded that feed rate of CO2 is dominant in precipitation experiments and it has a key role in dissociation and reaction of magnesium hydroxide in precipitation of magnesium carbonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospraying or electrostatic atomisation is a process of liquid disruption by electrostatic forces. When liquid is brought into an electric field, charge is induced to its surface. Once the repulsive electrostatic force exceeds the liquid surface tension, the liquid disrupts into small highly charged droplets. The size of the electrosprayed droplets can range from hundreds of micrometers down to a few tens of nanometers. Electrospraying can be used not only to produce droplets, but also solid particles. The research presented in this thesis concentrates on producing drug particles by this method. In the experiments, a drug powder was dissolved in a convenient solvent and the solution was atomised. The solvent was then evaporated from the formed droplets in a drying medium and inside each droplet, a dense cluster of the dissolved drug remained. From the pharmaceutical point of view, the most important characteristics of the produced particles are size distribution, porosity, crystal form and degree of crystallinity. These properties affect the dissolution behaviour and ultimately the drug bioavailability in the body. The effects of electrostatic atomization on the aforementioned characteristics are generally not well understood. The research focused on studying these particle properties and finding possible correlations with the spraying parameters. The produced droplets were dried either under atmospheric or reduced pressure, the latter in order to improve the drying process. Special emphasis was put on implementing the spraying under reduced pressure, and the effects of the drying pressure on particle properties. Based on the results, the possibilities to enhance the dissolution of poorly soluble drugs by this method were estimated. In the course of experiments, it was also discovered that electrospraying may have a profound effect on the polymorphic form of the produced drug particles. In the light of the obtained results, it was concluded that electrospraying may offer a valuable tool to overcome some of the challenges met in modern drug development and formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing pharmaceutical interest, among others, in the polymorphic composition of the emerging solid end-products from production processes has been traced to the need for attainment of high product purity. This is more so as the presence of different polymorphs may constitute physical impurity of the product. Hence, the need for optimization of the yield of desired product component(s) through controlled crystallization kinetics for instance. This study was carried out to investigate the impact of pulsed electric field (PEF) irradiation on the crystal morphology of glycine obtained by cooling crystallization (without seeding) from commercial glycine sample in distilled deionized water solution. In doing so, three different pulse frequencies (294, 950 and 145 Hz) and a case without PEF were studied at three cooling rates (5, 10 and 20 ºC/h). The crystal products obtained were analyzed for polymorphic composition by powder x-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy while the particles characterization was done on Morphologi G3. The results obtained from this study showed that pulsed electric field irradiation had significant impact on metastability of the aqueous solution as well as on the polymorphic composition of the end product. With increasing PEF frequency applied, nucleation started earlier and the γ-glycine polymorph content of the product crystals increased. These were found to have been aided by cooling rate, as the most significant effect was observed at 5 ºC/h. It was also discovered that PEF application had no measurable impact on the pH of the aqueous solution as well as the size distribution of the particles. Cooling on the contrary was believed to be responsible for the broadening of the particle size distribution with a downward shift of the lower limit of the raw material from about 100 μm to between 10 and 50 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli testata ja optimoida erään alipainerumpusuodattimen toimivuutta, ja lisäksi maksimoida tuottavuus ja vertailla erilaisten pesumenetelmientehokkuutta. Testilietteiden ¿ rautarikasteen ja täyteainepastan ¿ karakterisointi oli myös tärkeää. Kirjallisuusosassa tarkasteltiin lyhyesti neste-kiintoaine-erotuksen teoriaa, erityisesti alipainesuodatusta ja alipainerumpusuodattimia. Lisäksi käsiteltiin kapillaarisuodatuksen toimintaperiaatteita sekä selvitettiin kaivosteollisuuden veden talteenottokeinoja, kiintoainejäämien käsittelymenetelmiä ja Chilen kaivosteollisuuden nykytilaa. Työn kokeellinen osa suoritettiin käyttämällä raskaita ja kiintoainepitoisuuksiltaan korkeita lietteitä, eli rautarikastetta ja täyteainepastaa. Kokeet suoritettiin erityisellä alipainerumpusuodattimella, joka oli muokattu perinteisestäpäältä syötettävästä alipainerumpusuodattimesta. Kokeissa tutkittiin pyörimisnopeuden ja erilaisten pesumenetelmien vaikutusta kakun kosteuteen ja suodatuskapasiteettiin. Koelietteiden karakterisointi suoritettiin analysoimalla partikkelikokojakauma, kiintoainepitoisuus, metallipitoisuus ja koostumus. Kokeiden perusteella havaittiin, että rummun pyörimisnopeudella ja lietteen kiintoainepitoisuudella on merkittävä vaikutus suodatuskapasiteettiin ja kakun kosteuspitoisuuteen. Havaittiin myös, että kakun kosteuspitoisuuksissa ja rummun suodatuskapasiteeteissa oli eroja, kun verrattiin eri suodatinväliaineen pesumenetelmiä. Täten oikean pesumenetelmän valinta on tärkeää, ja sillä pystytään lisäämään suodatinväliaineen käyttöikää.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn ensimmäisenä tarkoituksena oli kartoittaa kiinteä-neste ja neste-neste uuttomenetelmillä pihkan ja valkopihkan määrä Stora Enso Kabelin tuotantolinja 4:llä. Työn kannalta oli myöstärkeää saada selvyys saostumien koostumuksesta. Lopullinen päämäärä oli automatisoida fiksatiivin annostelu uuden, jatkuvatoimisen märänpäänanalysaattorin avulla. Mäntyosuuden kasvattaminen hiokemassassa lisää hydrofobisten partikkeleiden lukumäärää, minkä uskotaan lisäävän saostumariskiä. Työtä varten kehitetty neste-neste uuttomenetelmä, jota ei ole liiemmin paperiteollisuudessa käytetty, voi olla hyvä menetelmä lipofiilisten komponenttien määrän arviointiin tietyssä määrässä massa- tai prosessivesinäytettä. Virtaussytometri-menetelmän avulla tutkittiin pihka- tai valkopihkapartikkeleiden määrää ja kokojakaumaa eri prosessinäytteissä. Virtaussytometri-menetelmällä mitattujen valkopihkapartikkeleiden lukumäärän ja päällystetyn hylyn saostimen suodoksen sameuden välille löytyiselvä korrelaatio. Fiksatiivimäärän vaikutusta päällystetyn hylyn saostimen suodoksen sameuteen tutkittiin koeajojaksolla, jossa fiksatiivin annostelua säädettiin käsin. Käytetyt annosmäärät eivät riittäneet sameuden pitämiseen tasaisena matalalla tasolla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considered the current situation of solid and liquid biofuels markets and international biofuels trade in Finland and identified the challenges ofthe emerging international biofuels markets for Finland. The fact that industryconsumes more than half of the total primary energy, widely applied combined heat and power production (CHP) and a high share of biofuels in the total energy consumption are specific to the Finnish energy system. One third of the electricity is generated in CHP plants. As much as 27% of the total energy consumption ismet by using wood and peat, which makes Finland the leading country in the use of biofuels. Finland has made a commitment to maintain greenhouse gas emissions at the 1990 level at the highest during the period 2008-2012. The Finnish energypolicy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In this study, the wooden raw material streams of the forest industry were included the international biofuels trade in addition to biomass streams that are traded for energy production. In 2004, as much as 45% of the raw wood importedinto Finland ended up in energy production. The total international trading of biofuels was evaluated at 72 PJ, of which the majority, 58 PJ, was raw wood. About 22% of wood based energy in Finland originated from imported raw wood. Tall oil and wood pellets composed the largest export streams of biofuels. The annual turnover of international biofuels trade was estimated at about ¤ 90 million fordirect trade and at about ¤ 190 million for indirect trade. The forest industryas the biggest user of wood, and the producer and user of wood fuels has a central position in biomass and biofuels markets in Finland. Lately, the international aspects of Finnish biofuels markets have been emphasised as the import of rawwood and the export of wood pellets have increased. Expanding the use of biofuels in the road transportation sector would increase the international streams ofbiofuels in Finland. In coming years, the international trading of biomass for energy purposes can be expected to continue growing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä tutkittiin kahden erilaisen partikkelikokoanalysaattorin, PSyA:n ja PIA:n soveltuvuutta flokkuloinnin online-seurantaan. Kummallekin menetelmälle määritettiin raja-arvot, kuten lietteen maksimisakeus. Lisäksi tutkittiin flokkulanttiannostuksen, sekoitusnopeuden, sekoitusajan ja lietteen kiintoainepitoisuuden vaikutusta flokkikokojakaumaan. Kirjallisuusosassa tarkasteltiin kolloidisen suspension ominaispiirteitä, koaguloinnin ja flokkuloinnin teoriaa, flokkulaation kokeellista tutkimista sekä prosessin jatkuvatoimiseen seurantaan soveltuvia laitteita. Lisäksi esitettiin taustaa hydrometallurgisesta prosessista, johon työ liittyy. Flokkauskokeissa käytettiin jätevettä, jonka koostumus vastasi metalliteollisuuden peittausjätevesien tyypillistä koostumusta. Tutkittava jätevesimäärä käsiteltiin ensin kalkkimaidolla, jonka jälkeen saostunut kiintoaine flokattiin synteettisellä polymeeriflokkulantilla. Lietteen keskimääräinen kiintoainepitoisuus oli n. 10 g/l. Esikokeiden perusteella PSyA:lla voitiin mitata ilman laimennusta, mutta PIA:lla tuloksia ei saatu ilman laimentamista kiintoainepitoisuuteen n. 2,5 g/l. Kokeiden aikana havaittiin, että flokit muodostuivat erittäin nopeasti. Flokkien hajoaminen alkoi pian sen jälkeen, kun flokkulantin annostelu lopetettiin. Sekoitusnopeudella 40 r/min tai alle flokit alkoivat laskeutua astian pohjalle sekoituksesta huolimatta ja ne pysyivät pitempään koossa kuin suuremmilla sekoitusnopeuksilla. 5 - 10 minuutin kuluttua flokkulantin lisäämisestä saavutettiin tasapaino, jolloin flokkien kokojakauma ei enää muuttunut. Sekoitusnopeuksilla 80 r/min ja 120 r/min tasapainotilanteen koko-jakauma oli selvästi kapeampi kuin pienimmällä sekoitusnopeudella. Alkuperäisessä lietteessä flokit olivat suurempia kuin laimennetussa lietteessä. PSyA:lla jännepituusjakaumien määrittäminen oli varsin hidasta prosessissa tapahtuviin muutoksiin verrattuna, ja tuloksissa oli suurta hajontaa. PIA:lla saadut partikkelikokojakaumat sitä vastoin olivat johdonmukaisempia, vaikka suurimpien flokkien määrittäminen osoittautuikin epämääräiseksi. Menetelmän suurimmaksi puutteeksi todettiin soveltumattomuus sakeiden lietteiden analysointiin. Kumpikaan menetelmä ei ilman modifiointia sovellu tutkitun lietteen kaltaisten prosessilietteiden flokkuloinnin seurantaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study considered the current situation of biofuels markets in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 21% of the total energy consumption in 2006. Almost 80% of the wood-based energy is recovered from industrial by-products and residues. Finland has commitment itself to maintaining its greenhouse gas emissions at the 1990 level, at the highest, during the period 2008–2012. The energy and climate policy carried out in recent years has been based on the National Energy and Climate introduced in 2005. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In 2007, the government started to prepare a new long-term (up to the year 2050) climate and energy strategy that will meet EU’s new targets for the reduction of green house gas emissions and the promotion of renewable energy sources. The new strategy will be introduced during 2008. The international biofuels trade has a substantial importance for the utilisation of bioenergy in Finland. In 2006, the total international trading of solid and liquid biofuels was approximately 64 PJ of which import was 61 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2006, as much as 24% of wood energy was based on foreignorigin wood. Wood pellets and tall oil form the majority of export streams of biofuels. The indirect import of wood fuels increased almost 10% in 2004–2006, while the direct trade of solid and liquid biofuels has been almost constant.