18 resultados para STIMULI
Resumo:
Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.
Resumo:
Stressignaler avkänns många gånger av membranbundna proteiner som översätter signalerna till kemisk modifiering av molekyler, ofta proteinkinaser Dessa kinaser överför de avkodade budskapen till specifika transkriptionsfaktorer genom en kaskad av sekventiella fosforyleringshändelser, transkriptionsfaktorerna aktiverar i sin tur de gener som behövs för att reagera på stressen. En av de mest kända måltavlorna för stressignaler är transkriptionsfaktor AP-1 familjemedlemen c-Jun. I denna studie har jag identifierat den nukleolära proteinet AATF som en ny regulator av c-Jun-medierad transkriptionsaktivitet. Jag visar att stresstimuli inducerar omlokalisering av AATF vilket i sin tur leder till aktivering av c-Jun. Den AATF-medierad ökningen av c-Jun-aktiviteten leder till en betydande ökning av programmerad celldöd. Parallellt har jag vidarekarakteriserat Cdk5/p35 signaleringskomplexet som tidigare har identifierats i vårt laboratorium som en viktig faktor för myoblastdifferentiering. Jag identifierade den atypiska PKCξ som en uppströms regulator av Cdk5/p35-komplexet och visar att klyvning och aktivering av Cdk5 regulatorn p35 är av fysiologisk betydelse för differentieringsprocessen och beroende av PKCξ aktivitet. Jag visar att vid induktion av differentiering fosforylerar PKCξ p35 vilket leder till calpain-medierad klyvning av p35 och därmed ökning av Cdk5-aktiviteten. Denna avhandling ökar förståelsen för de regulatoriska mekanismer som styr c-Jun-transkriptionsaktiviteten och c-Jun beroende apoptos genom att identifiera AATF som en viktig faktor. Dessutom ger detta arbete nya insikter om funktionen av Cdk5/p35-komplexet under myoblastdifferentiering och identifierar PKCξ som en uppströms regulator av Cdk5 aktivitet och myoblast differentiering.
Resumo:
The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.