18 resultados para Round Lake Area School District 116 (Ill.)
Resumo:
Water geochemistry is a very important tool for studying the water quality in a given area. Geology and climate are the major natural factors controlling the chemistry of most natural waters. Anthropogenic impacts are the secondary sources of contamination in natural waters. This study presents the first integrative approach to the geochemistry and water quality of surface waters and Lake Qarun in the Fayoum catchment, Egypt. Moreover, geochemical modeling of Lake Qarun was firstly presented. The Nile River is the main source of water to the Fayoum watershed. To investigate the quality and geochemistry of this water, water samples from irrigation canals, drains and Lake Qarun were collected during the period 2010‒2013 from the whole Fayoum drainage basin to address the major processes and factors governing the evolution of water chemistry in the investigation area. About 34 physicochemical quality parameters, including major ions, oxygen isotopes, trace elements, nutrients and microbiological parameters were investigated in the water samples. Multivariable statistical analysis was used to interpret the interrelationship between the different studied parameters. Geochemical modeling of Lake Qarun was carried out using Hardie and Eugster’s evolutionary model and a model simulated by PHREEQC software. The crystallization sequence during evaporation of Lake Qarun brine was also studied using a Jänecke phase diagram involving the system Na‒K‒Mg‒ Cl‒SO4‒H2O. The results show that the chemistry of surface water in the Fayoum catchment evolves from Ca- Mg-HCO3 at the head waters to Ca‒Mg‒Cl‒SO4 and eventually to Na‒Cl downstream and at Lake Qarun. The main processes behind the high levels of Na, SO4 and Cl in downstream waters and in Lake Qarun are dissolution of evaporites from Fayoum soils followed by evapoconcentration. This was confirmed by binary plots between the different ions, Piper plot, Gibb’s plot and δ18O results. The modeled data proved that Lake Qarun brine evolves from drainage waters via an evaporation‒crystallization process. Through the precipitation of calcite and gypsum, the solution should reach the final composition "Na–Mg–SO4–Cl". As simulated by PHREEQC, further evaporation of lake brine can drive halite to precipitate in the final stages of evaporation. Significantly, the crystallization sequence during evaporation of the lake brine at the concentration ponds of the Egyptian Salts and Minerals Company (EMISAL) reflected the findings from both Hardie and Eugster’s evolutionary model and the PHREEQC simulated model. After crystallization of halite at the EMISAL ponds, the crystallization sequence during evaporation of the residual brine (bittern) was investigated using a Jänecke phase diagram at 35 °C. This diagram was more useful than PHREEQC for predicting the evaporation path especially in the case of this highly concentrated brine (bittern). The predicted crystallization path using a Jänecke phase diagram at 35 °C showed that halite, hexahydrite, kainite and kieserite should appear during bittern evaporation. Yet the actual crystallized mineral salts were only halite and hexahydrite. The absence of kainite was due to its metastability while the absence of kieserite was due to opposed relative humidity. The presence of a specific MgSO4.nH2O phase in ancient evaporite deposits can be used as a paleoclimatic indicator. Evaluation of surface water quality for agricultural purposes shows that some irrigation waters and all drainage waters have high salinities and therefore cannot be used for irrigation. Waters from irrigation canals used as a drinking water supply show higher concentrations of Al and suffer from high levels of total coliform (TC), fecal coliform (FC) and fecal streptococcus (FS). These waters cannot be used for drinking or agricultural purposes without treatment, because of their high health risk. Therefore it is crucial that environmental protection agencies and the media increase public awareness of this issue, especially in rural areas.
Resumo:
Russian FDI has a few peculiarities. One of them is round-tripping. Round-tripping is defined as transfer of funds abroad, usually to offshore financial centers (OFCs), and then bringing all or some of the investment back as foreign investment. Russian context was chosen for this study because the share of round-tripping investments from country’s total FDI is extensive. However, it needs to be addressed that this is not just a Russian phenomenon. Round-tripping is used by many developed and developing countries, and most of the countries have their own designated destinations for this kind of capital, much like Cyprus is the main destination for Russian capital. It is important to study this phenomenon further, since it falsifies FDI statistics and can lead to poor decisions on state level. Theoretical part of the study tries to determine weather traditional FDI and internationalization theories fit to explain the Russian round-tripping phenomenon. Traditional FDI and internationalization theories are first introduced in general terms, and then further examined in Russian context. In traditional endogenic FDI theories, when the capital is formed in one country it goes abroad to find better profits. At a first glance, this seemed not to be the case in round-tripping. However, during the study it became rather clear that with few adjustments and changes in perspective, traditional theories could be used to explain round-tripping phenomenon. For example, OLI paradigm can be further developed into OLIH paradigm with ‘H’ representing the important home country institutions. Transaction based view and resource seeking theories were also seen well equipped to explain round-tripping with a change in perspective. The latter part of the study focused on holistic understanding of Russian –Cyprian investment relationship. Study aims to shed light into the determinants and consequences of this phenomenon for both countries involved. The two share historical, cultural and political ties, but most importantly common financial interests. Russian companies seek security and financial knowledge to maneuver their assets and Cyprian economy largely is dependent on their disproportionally large financial sector. Consequences for Cyprian economy were seen in current economic crisis, when the need for their financial services diminished. Russian government on the other hand is losing vast amounts of tax money due to this phenomenon. A rather extreme view was also introduced in this study. Round-tripping phenomenon and OFCs are an important reason why corruption exists, since if one does not have a way to make ill-gained money legitimate why try to ill-gain the money at the first place. The most important finding of the study is that round-tripping companies are in a better competitive position than genuine and purely domestic investor due to their institutional knowledge.
Resumo:
The future of paying in the age of digitalization is a topic that includes varied visions. This master’s thesis explores images of the future of paying in the Single Euro Payment Area (SEPA) up to 2020 and 2025 through the views of experts specialized in paying. This study was commissioned by a credit management company in order to obtain more detailed information about the future of paying. Specifically, this thesis investigates what could be the most used payment methods in the future, what items could work as a medium of exchange in 2020 and how will they evolve towards the year 2025. Changing consumer behavior, trends connected to payment methods, security and private issues of new cashless payment methods were also part of this study. In the empirical part of the study the experts’ ideas about probable and preferable future images of paying were investigated through a two-round Disaggregative Delphi method. The questionnaire included numeric statements and open questions. Three alternative future images were created with the help of cluster analysis: “Unsurprising Future”, “Technology Driven Future” and “The Age of the Customer”. The plausible images had similarities and differences, which were reflected to the previous studies in the literature review. The study’s findings were formed based on the images of futures’ similarities and to the open questions answers that were received from the questionnaire. The main conclusion of the study was that development of technology will unify and diversify SEPA; the trend in 2020 seems to be towards more cashless payment methods but their usage depends on the countries’ financial possibilities and customer preferences. Mobile payments, cards and cash will be the main payment methods but the banks will have competitors from outside the financial sector. Wearable payment methods and NFC technology are seen as widely growing trends but subcutaneous payment devices will likely keep their niche position until 2025. In the meantime, security and private issues are seen to increase because of identity thefts and various frauds. Simultaneously, privacy will lose its meaning to younger consumers who are used to sharing their transaction and personal data with third parties in order to get access to attractive services. Easier access to consumers’ transaction data will probably open the door for hackers and cause new risks in paying processes. There exist many roads to future, and this study was not an attempt to give any complete answers about it even if some plausible assumptions about the future’s course were provided.