20 resultados para Resolution algorithm
Resumo:
Optical microscopy is living its renaissance. The diffraction limit, although still physically true, plays a minor role in the achievable resolution in far-field fluorescence microscopy. Super-resolution techniques enable fluorescence microscopy at nearly molecular resolution. Modern (super-resolution) microscopy methods rely strongly on software. Software tools are needed all the way from data acquisition, data storage, image reconstruction, restoration and alignment, to quantitative image analysis and image visualization. These tools play a key role in all aspects of microscopy today – and their importance in the coming years is certainly going to increase, when microscopy little-by-little transitions from single cells into more complex and even living model systems. In this thesis, a series of bioimage informatics software tools are introduced for STED super-resolution microscopy. Tomographic reconstruction software, coupled with a novel image acquisition method STED< is shown to enable axial (3D) super-resolution imaging in a standard 2D-STED microscope. Software tools are introduced for STED super-resolution correlative imaging with transmission electron microscopes or atomic force microscopes. A novel method for automatically ranking image quality within microscope image datasets is introduced, and it is utilized to for example select the best images in a STED microscope image dataset.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.
Resumo:
Currently, laser scribing is growing material processing method in the industry. Benefits of laser scribing technology are studied for example for improving an efficiency of solar cells. Due high-quality requirement of the fast scribing process, it is important to monitor the process in real time for detecting possible defects during the process. However, there is a lack of studies of laser scribing real time monitoring. Commonly used monitoring methods developed for other laser processes such a laser welding, are sufficient slow and existed applications cannot be implemented in fast laser scribing monitoring. The aim of this thesis is to find a method for laser scribing monitoring with a high-speed camera and evaluate reliability and performance of the developed monitoring system with experiments. The laser used in experiments is an IPG ytterbium pulsed fiber laser with 20 W maximum average power and Scan head optics used in the laser is Scanlab’s Hurryscan 14 II with an f100 tele-centric lens. The camera was connected to laser scanner using camera adapter to follow the laser process. A powerful fully programmable industrial computer was chosen for executing image processing and analysis. Algorithms for defect analysis, which are based on particle analysis, were developed using LabVIEW system design software. The performance of the algorithms was analyzed by analyzing a non-moving image from the scribing line with resolution 960x20 pixel. As a result, the maximum analysis speed was 560 frames per second. Reliability of the algorithm was evaluated by imaging scribing path with a variable number of defects 2000 mm/s when the laser was turned off and image analysis speed was 430 frames per second. The experiment was successful and as a result, the algorithms detected all defects from the scribing path. The final monitoring experiment was performed during a laser process. However, it was challenging to get active laser illumination work with the laser scanner due physical dimensions of the laser lens and the scanner. For reliable error detection, the illumination system is needed to be replaced.
Resumo:
Epilepsy is a chronic brain disorder, characterized by reoccurring seizures. Automatic sei-zure detector, incorporated into a mobile closed-loop system, can improve the quality of life for the people with epilepsy. Commercial EEG headbands, such as Emotiv Epoc, have a potential to be used as the data acquisition devices for such a system. In order to estimate that potential, epileptic EEG signals from the commercial devices were emulated in this work based on the EEG data from a clinical dataset. The emulated characteristics include the referencing scheme, the set of electrodes used, the sampling rate, the sample resolution and the noise level. Performance of the existing algorithm for detection of epileptic seizures, developed in the context of clinical data, has been evaluated on the emulated commercial data. The results show, that after the transformation of the data towards the characteristics of Emotiv Epoc, the detection capabilities of the algorithm are mostly preserved. The ranges of acceptable changes in the signal parameters are also estimated.
Resumo:
Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.