20 resultados para Relativistic wave equation
Resumo:
At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.
Resumo:
Background: Type 2 diabetes patients have a 2-4 fold risk of cardiovascular disease (CVD) compared to the general population. In type 2 diabetes, several CVD risk factors have been identified, including obesity, hypertension, hyperglycemia, proteinuria, sedentary lifestyle and dyslipidemia. Although much of the excess CVD risk can be attributed to these risk factors, a significant proportion is still unknown. Aims: To assess in middle-aged type 2 diabetic subjects the joint relations of several conventional and non-conventional CVD risk factors with respect to cardiovascular and total mortality. Subjects and methods: This thesis is part of a large prospective, population based East-West type 2 diabetes study that was launched in 1982-1984. It includes 1,059 middle-aged (45-64 years old) participants. At baseline, a thorough clinical examination and laboratory measurements were performed and an ECG was recorded. The latest follow-up study was performed 18 years later in January 2001 (when the subjects were 63-81 years old). The study endpoints were total mortality and mortality due to CVD, coronary heart disease (CHD) and stroke. Results: Physically more active patients had significantly reduced total, CVD and CHD mortality independent of high-sensitivity C-reactive protein (hs-CRP) levels unless proteinuria was present. Among physically active patients with a hs-CRP level >3 mg/L, the prognosis of CVD mortality was similar to patients with hs-CRP levels ≤3 mg/L. The worst prognosis was among physically inactive patients with hs-CRP levels >3 mg/L. Physically active patients with proteinuria had significantly increased total and CVD mortality by multivariate analyses. After adjustment for confounding factors, patients with proteinuria and a systolic BP <130 mmHg had a significant increase in total and CVD mortality compared to those with a systolic BP between 130 and 160 mmHg. The prognosis was similar in patients with a systolic BP <130 mmHg and ≥160 mmHg. Among patients without proteinuria, a systolic BP <130 mmHg was associated with a non-significant reduction in mortality. A P wave duration ≥114 ms was associated with a 2.5-fold increase in stroke mortality among patients with prevalent CHD or claudication. This finding persisted in multivariable analyses. Among patients with no comorbidities, there was no relationship between P wave duration and stroke mortality. Conclusions: Physical activity reduces total and CVD mortality in patients with type 2 diabetes without proteinuria or with elevated levels of hs-CRP, suggesting that the anti-inflammatory effect of physical activity can counteract increased CVD morbidity and mortality associated with a high CRP level. In patients with proteinuria the protective effect was not, however, present. Among patients with proteinuria, systolic BP <130 mmHg may increase mortality due to CVD. These results demonstrate the importance of early intervention to prevent CVD and to control all-cause mortality among patients with type 2 diabetes. The presence of proteinuria should be taken into account when defining the target systolic BP level for prevention of CVD deaths. A prolongation of the duration of the P wave was associated with increased stroke mortality among high-risk patients with type 2 diabetes. P wave duration is easy to measure and merits further examination to evaluate its importance for estimation of the risk of stroke among patients with type 2 diabetes.
Resumo:
Abstract This doctoral thesis concerns the active galactic nucleus (AGN) most often referred to with the catalogue number OJ287. The publications in the thesis present new discoveries of the system in the context of a supermassive binary black hole model. In addition, the introduction discusses general characteristics of the OJ287 system and the physical fundamentals behind these characteristics. The place of OJ287 in the hierarchy of known types of AGN is also discussed. The introduction presents a large selection of fundamental physics required to have a basic understanding of active galactic nuclei, binary black holes, relativistic jets and accretion disks. Particularly the general relativistic nature of the orbits of close binaries of supermassive black holes is explored with some detail. Analytic estimates of some of the general relativistic effects in such a binary are presented, as well as numerical methods to calculate the effects more precisely. It is also shown how these results can be applied to the OJ287 system. The binary orbit model forms the basis for models of the recurring optical outbursts in the OJ287 system. In the introduction, two physical outburst models are presented in some detail and compared. The radiation hydrodynamics of the outbursts are discussed and optical light curve predictions are derived. The precursor outbursts studied in Paper III are also presented, and tied into the model of OJ287. To complete the discussion of the observable features of OJ287, the nature of the relativistic jets in the system, and in active galactic nuclei in general, is discussed. Basic physics of relativistic jets are presented, with additional detail added in the form of helical jet models. The results of Papers II, IV and V concerning the jet of OJ287 are presented, and their relation to other facets of the binary black hole model is discussed. As a whole, the introduction serves as a guide, though terse, for the physics and numerical methods required to successfully understand and simulate a close binary of supermassive black holes. For this purpose, the introduction necessarily combines a large number of both fundamental and specific results from broad disciplines like general relativity and radiation hydrodynamics. With the material included in the introduction, the publications of the thesis, which present new results with a much narrower focus, can be readily understood. Of the publications, Paper I presents newly discovered optical data points for OJ287, detected on archival astronomical plates from the Harvard College Observatory. These data points show the 1900 outburst of OJ287 for the first time. In addition, new data points covering the 1913 outburst allowed the determination of the start of the outburst with more precision than was possible before. These outbursts were then successfully numerically modelled with an N-body simulation of the OJ287 binary and accretion disc. In Paper II, mechanisms for the spin-up of the secondary black hole in OJ287 via interaction with the primary accretion disc and the magnetic fields in the system are discussed. Timescales for spin-up and alignment via both processes are estimated. It is found that the secondary black hole likely has a high spin. Paper III reports a new outburst of OJ287 in March 2013. The outburst was found to be rather similar to the ones reported in 1993 and 2004. All these outbursts happened just before the main outburst season, and are called precursor outbursts. In this paper, a mechanism was proposed for the precursor outbursts, where the secondary black hole collides with a gas cloud in the primary accretion disc corona. From this, estimates of brightness and timescales for the precursor were derived, as well as a prediction of the timing of the next precursor outburst. In Paper IV, observations from the 2004–2006 OJ287 observing program are used to investigate the existence of short periodicities in OJ287. The existence of a _50 day quasiperiodic component is confirmed. In addition, statistically significant 250 day and 3.5 day periods are found. Primary black hole accretion of a spiral density wave in the accretion disc is proposed as the source of the 50 day period, with numerical simulations supporting these results. Lorentz contracted jet re-emission is then proposed as the reason for the 3.5 day timescale. Paper V fits optical observations and mm and cm radio observations of OJ287 with a helical jet model. The jet is found to have a spine–sheath structure, with the sheath having a much lower Lorentz gamma factor than the spine. The sheath opening angle and Lorentz factor, as well as the helical wavelength of the jet are reported for the first time. Tiivistelmä Tässä väitöskirjatutkimuksessa on keskitytty tutkimaan aktiivista galaksiydintä OJ287. Väitöskirjan osana olevat tieteelliset julkaisut esittelevät OJ287-systeemistä saatuja uusia tuloksia kaksoismusta-aukkomallin kontekstissa. Väitöskirjan johdannossa käsitellään OJ287:n yleisiä ominaisuuksia ja niitä fysikaalisia perusilmiöitä, jotka näiden ominaisuuksien taustalla vaikuttavat. Johdanto selvittää myös OJ287-järjestelmän sijoittumisen aktiivisten galaksiytimien hierarkiassa. Johdannossa käydään läpi joitakin perusfysiikan tuloksia, jotka ovat tarpeen aktiivisten galaksiydinten, mustien aukkojen binäärien, relativististen suihkujen ja kertymäkiekkojen ymmärtämiseksi. Kahden toisiaan kiertävän mustan aukon keskinäisen radan suhteellisuusteoreettiset perusteet käydään läpi yksityiskohtaisemmin. Johdannossa esitetään joitakin analyyttisiä tuloksia tällaisessa binäärissä havaittavista suhteellisuusteoreettisista ilmiöistä. Myös numeerisia menetelmiä näiden ilmiöiden tarkempaan laskemiseen esitellään. Tuloksia sovelletaan OJ287-systeemiin, ja verrataan havaintoihin. OJ287:n mustien aukkojen ratamalli muodostaa pohjan systeemin toistuvien optisten purkausten malleille. Johdannossa esitellään yksityiskohtaisemmin kaksi fysikaalista purkausmallia, ja vertaillaan niitä. Purkausten säteilyhydrodynamiikka käydään läpi, ja myös ennusteet purkausten valokäyrille johdetaan. Johdannossa esitellään myös Julkaisussa III johdettu prekursoripurkausten malli, ja osoitetaan sen sopivan yhteen OJ287:n binäärimallin kanssa. Johdanto esittelee myös relativististen suihkujen fysiikkaa sekä OJ287- systeemiin liittyen että aktiivisten galaksiydinten kontekstissa yleisesti. Relativististen suihkujen perusfysiikka esitellään, kuten myös malleja kierteisistä suihkuista. Julkaisujen II, IV ja V OJ287-systeemin suihkuja koskevat tulokset esitellään binäärimallin kontekstissa. Kokonaisuutena johdanto palvelee suppeana oppaana, joka esittelee tarvittavan fysiikan ja tarpeelliset numeeriset menetelmät mustien aukkojen binäärijärjestelmän ymmärtämiseen ja simulointiin. Tätä tarkoitusta varten johdanto yhdistää sekä perustuloksia että joitakin syvällisempiä tuloksia laajoilta fysiikan osa-alueilta kuten suhteellisuusteoriasta ja säteilyhydrodynamiikasta. Johdannon sisältämän materiaalin avulla väitöskirjan julkaisut, ja niiden esittämät tulokset, ovat hyvin ymmärrettävissä. Väitöskirjan julkaisuista ensimmäinen esittelee uusia OJ287-systeemistä saatuja havaintopisteitä, jotka on paikallistettu Harvardin yliopiston observatorion arkiston valokuvauslevyiltä. OJ287:n vuonna 1900 tapahtunut purkaus nähdään ensimmäistä kertaa näissä havaintopisteissä. Uudet havaintopisteet mahdollistivat myös vuoden 1913 purkauksen alun ajoittamisen tarkemmin kuin aiemmin oli mahdollista. Havaitut purkaukset mallinnettiin onnistuneesti simuloimalla OJ287-järjestelmän mustien aukkojen paria ja kertymäkiekkoa. Julkaisussa II käsitellään mekanismeja OJ287:n sekundäärisen mustan aukon spinin kasvamiseen vuorovaikutuksessa primäärin kertymäkiekon ja systeemin magneettikenttien kanssa. Julkaisussa arvioidaan maksimispinin saavuttamisen ja spinin suunnan vakiintumisen aikaskaalat kummallakin mekanismilla. Tutkimuksessa havaitaan sekundäärin spinin olevan todennäköisesti suuri. Julkaisu III esittelee OJ287-systeemissä maaliskuussa 2013 tapahtuneen purkauksen. Purkauksen havaittiin muistuttavan vuosina 1993 ja 2004 tapahtuneita purkauksia, joita kutsutaan yhteisnimityksellä prekursoripurkaus (precursor outburst). Julkaisussa esitellään purkauksen synnylle mekanismi, jossa OJ287-systeemin sekundäärinen musta aukko osuu primäärisen mustan aukon kertymäkiekon koronassa olevaan kaasupilveen. Mekanismin avulla johdetaan arviot prekursoripurkausten kirkkaudelle ja aikaskaalalle. Julkaisussa johdetaan myös ennuste seuraavan prekursoripurkauksen ajankohdalle. Julkaisussa IV käytetään vuosina 2004–2006 kerättyjä havaintoja OJ287- systeemistä lyhyiden jaksollisuuksien etsintään. Julkaisussa varmennetaan systeemissä esiintyvä n. 50 päivän kvasiperiodisuus. Lisäksi tilastollisesti merkittävät 250 päivän ja 3,5 päivän jaksollisuudet havaitaan. Julkaisussa esitetään malli, jossa primäärisen mustan aukon kertymäkiekossa oleva spiraalitiheysaalto aiheuttaa 50 päivän jaksollisuuden. Mallista tehty numeerinen simulaatio tukee tulosta. Systeemin relativistisen suihkun emittoima aikadilatoitunut säteily esitetään aiheuttajaksi 3,5 päivän jaksollisuusaikaskaalalle. Julkaisussa V sovitetaan kierresuihkumalli OJ287-systeemistä tehtyihin optisiin havaintoihin ja millimetri- sekä senttimetriaallonpituuden radiohavaintoihin. Suihkun rakenteen havaitaan olevan kaksijakoinen ja koostuvan ytimestä ja kuoresta. Suihkun kuorella on merkittävästi pienempi Lorentzin gamma-tekijä kuin suihkun ytimellä. Kuoren avautumiskulma ja Lorentztekijä sekä suihkun kierteen aallonpituus raportoidaan julkaisussa ensimmäistä kertaa.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.