19 resultados para Polynomial algebra


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis introduces an extension of Chomsky’s context-free grammars equipped with operators for referring to left and right contexts of strings.The new model is called grammar with contexts. The semantics of these grammars are given in two equivalent ways — by language equations and by logical deduction, where a grammar is understood as a logic for the recursive definition of syntax. The motivation for grammars with contexts comes from an extensive example that completely defines the syntax and static semantics of a simple typed programming language. Grammars with contexts maintain most important practical properties of context-free grammars, including a variant of the Chomsky normal form. For grammars with one-sided contexts (that is, either left or right), there is a cubic-time tabular parsing algorithm, applicable to an arbitrary grammar. The time complexity of this algorithm can be improved to quadratic,provided that the grammar is unambiguous, that is, it only allows one parsefor every string it defines. A tabular parsing algorithm for grammars withtwo-sided contexts has fourth power time complexity. For these grammarsthere is a recognition algorithm that uses a linear amount of space. For certain subclasses of grammars with contexts there are low-degree polynomial parsing algorithms. One of them is an extension of the classical recursive descent for context-free grammars; the version for grammars with contexts still works in linear time like its prototype. Another algorithm, with time complexity varying from linear to cubic depending on the particular grammar, adapts deterministic LR parsing to the new model. If all context operators in a grammar define regular languages, then such a grammar can be transformed to an equivalent grammar without context operators at all. This allows one to represent the syntax of languages in a more succinct way by utilizing context specifications. Linear grammars with contexts turned out to be non-trivial already over a one-letter alphabet. This fact leads to some undecidability results for this family of grammars