24 resultados para Paper work
Resumo:
This work is devoted to the analysis of signal variation of the Cross-Direction and Machine-Direction measurements from paper web. The data that we possess comes from the real paper machine. Goal of the work is to reconstruct the basis weight structure of the paper and to predict its behaviour to the future. The resulting synthetic data is needed for simulation of paper web. The main idea that we used for describing the basis weight variation in the Cross-Direction is Empirical Orthogonal Functions (EOF) algorithm, which is closely related to Principal Component Analysis (PCA) method. Signal forecasting in time is based on Time-Series analysis. Two principal mathematical procedures that we used in the work are Autoregressive-Moving Average (ARMA) modelling and Ornstein–Uhlenbeck (OU) process.
Resumo:
Offset printing is a popular printing method that is especially suitable for large and fast print jobs. Newspapers, magazines and books are typical examples of products printed with offset method. In high volume printing production high efficiency is essential. Offset printing uses tacky inks that cause serious stress to the paper surface. Dusting and linting are terms that describe how loose and weakly bonded particles are removed from the paper surface in the printing process. The removed particles accumulate in the process causing deteriorating print quality. This forces the printing operators to stop production for washing and cleaning. Time and money are lost. Dusting and linting tendency of paper can be decreased by improving the surface strength of paper. In the present work a method to increase the surface strength of paper was studied. In the literature part offset printing method and challenges related to offset printing are presented. A review of new methods for surface sizing of paper is also presented. The experimental part presents trials where an apparatus for improving paper surface strength was tested and developed in mill scale. Laboratory work supporting the actual mill scale operations is also presented. The acquired results provide a solid base of information to make decisions on how to proceed with research in the present field of study.
Resumo:
This thesis consists of four articles and an introductory section. The main research questions in all the articles refer to the changes in the representativeness of the Finnish Paper Workers' Union. Representativeness stands for the entire entity of external, internal, legal and reputational factors that enable the labor union to represent its members and achieve its goals. This concept is based on an extensive reading of quantitative and qualitative industrial relations literature, which includes works based on Marxist labor-capital relations (such as Hyman's industrial relations studies), and more recent union density studies as well as gender- and ethnic diversity-based 'union revitalization' studies. Müller-Jentsch's German studies of industrial relations have been of particular importance as well as Streeck's industrial unionism and technology studies. The concept of representativeness is an attempt to combine the insights of these diverse strands of literature and bring the scientific discussion of labor unions back to the core of a union's function: representing its members. As such, it can be seen as a theoretical innovation. The concept helps to acknowledge both the heterogeneity of the membership and the totality of a labor union organization. The concept of representativeness aims to move beyond notions of 'power'. External representativeness can be expressed through the position of the labor union in the industrial relations system and the economy. Internal representativeness focuses on the aspects of labor unions that relate to the function of the union as an association with members, such as internal democracy. Legal representativeness lies in the formal legal position of the union – its rights and instruments. This includes collective bargaining legislation, co-decision rules and industrial conflict legislation. Reputational representativeness is related to how the union is seen by other actors and the general public, and can be approximated using data on strike activity. All these aspects of representativeness are path-dependent, and show the results of previous struggles over issues. The concept of representativeness goes beyond notions of labor union power and symbolizes an attempt to bring back the focus of industrial relations studies to the union's basic function of representing its members. The first article shows in detail the industrial conflict of the Finnish paper industry in 2005. The intended focus was the issue of gender in the negotiations over a new collective agreement, but the focal point of the industrial conflict was the issue of outsourcing and how this should be organized. Also, the issue of continuous shifts as an issue of working time was very important. The drawn-out conflict can be seen as a struggle over principles, and under pressure the labor union had to concede ground on the aforementioned issues. The article concludes that in this specific conflict, the union represented its' female members to a lesser extent, because the other issues took such priority. Furthermore, because of the substantive concessions. the union lost some of its internal representativeness, and the stubbornness of the union may have even harmed the reputation of the union. This article also includes an early version of the representativeness framework, through which this conflict is analyzed. The second article discusses wage developments, union density and collective bargaining within the context of representativeness. It is shown that the union has been able to secure substantial benefits for its members, regardless of declining employment. Collective agreements have often been based on centralized incomes policies, but the paper sector has not always joined these. Attention is furthermore paid to the changing competition of the General Assembly, with a surprisingly strong position of the Left Alliance still. In an attempt to replicate analysis of union density measures, an analysis of sectoral union density shows that similar factors as in aggregate data influence this measure, though – due to methodological issues – the results may not be robust. On this issue, it can be said that the method of analysis for aggregate union density is not suitable for sectoral union density analysis. The increasingly conflict-ridden industrial relations predicted have not actually materialized. The article concludes by asking whether the aim of ever-increasing wages is a sustainable one in the light of the pressures of globalization, though wage costs are a relatively small part of total costs. The third article discusses the history and use of outsourcing in the Finnish paper industry. It is shown using Hyman's framework of constituencies that over time, the perspective of the union changed from 'members of the Paper Workers' Union' to a more specific view of who is a core member of the union. Within the context of the industrial unionism that the union claims to practice, this is an important change. The article shows that the union more and more caters for a core group, while auxiliary personnel is less important to the union's identity and constituencies, which means that the union's internal representativeness has decreased. Maintenance workers are an exception; the union and employers have developed a rotating system that increases the efficient allocation of these employees. The core reason of the exceptional status of maintenance personnel is their high level of non-transferable skills. In the end it is debatable whether the compromise on outsourcing solves the challenges facing the industry. The fourth article shows diverging discourses within the union with regard to union-employer partnership for competitiveness improvements and instruments of local union representatives. In the collective agreement of 2008, the provision regulating wage effects of significant changes in the organization or content of work was thoroughly changed, though this mainly reflected decisions by the Labor Court on the pre-2008 version of the provision. This change laid bare the deep rift between the Social Democratic and Left Alliance (ex-Communist) factions of the union. The article argues that through the changed legal meaning of the provision, the union was able to transform concession bargaining into a basis for partnership. The internal discontent about this issue is nonetheless substantial and a threat to the unity of the union, both locally and at the union level. On the basis of the results of the articles, other factors influencing representativeness, such as technology and EU law and an overview of the main changes in the Finnish paper industry, it is concluded that, especially in recent years, the Finnish Paper Workers' Union has lost some of its representativeness. In particular, the loss of the efficiency of strikes is noted, the compromise on outsourcing which may have alienated a substantial part of the union's membership, and the change in the collective agreement of 2008 have caused this decline. In the latter case, the internal disunion on that issue shows the constraints of the union's internal democracy. Furthermore, the failure of the union to join the TEAM industrial union (by democratic means), the internal conflicts and a narrow focus on its own sector may also hurt the union in the future, as the paper industry in Finland is going through a structural change. None of these changes in representativeness would have been so drastic without the considerable pressure of globalization - in particular changing markets, changing technology and a loss of domestic investments to foreign investments, which in the end have benefited the corporations more than the Finnish employees of these corporations. Taken together, the union risks becoming socially irrelevant in time, though it will remain formally very strong on the basis of its institutional setting and financial situation.
Resumo:
There are vast changes in the work environment, and the traditional rules and management methods might not be suitable for today’s employees anymore. The meaning of work is also changing due to the younger and higher educated generations entering the markets. Old customs need to be re-validated and new approaches should be taken into use. This paper strongly emphasizes the importance of happiness research and happiness at work. The values towards the meaning of work are changing; people demand happiness and quality from all aspects of their lives. The aim of this study is to define happiness - especially at work - and to explain how it can be measured and what kind of results achieved. I also want to find out how the contents of work and the working environment might enhance happiness. The correlation between education and happiness is discussed and examined. I am aware that the findings and theories are concentrating mainly on Western Countries and highlighting the values and work-environments of those societies. The main aim of the empirical study is to find out if there are connections between happiness and work in data collected by World Value Survey in 2005, and if the profession has effects on happiness. Other factors such as the correlation of age, sex, education and income are examined too. I also want to find out what kind of values people have towards work and how these affect the happiness levels. The focus is on two nations: Finland (N=1014) and Italy (N=1012). I have also taken the global comparison within, that is all 54 countries (N=66,566) included in the 5th wave (during the years 2005 -2008) of the World Value Survey. The results suggest that people are generally happy around the world; happiness decreasing with the age, the educated being happier than the uneducated and the employed happier than the unemployed. People working in neat “white collar” jobs are more likely happier than those working in factories or outdoors. Money makes us happier, until certain level is reached. Work is important to people and the importance of work adds happiness. Work is also highly appreciated, but there are more happy people among those who do not appreciate work that highly. Safety matters the most when looking for a job, and there are more happy people among those who have selected the importance of work as the first choice when looking for a job, than among those to whom an income is the most important aspect. People are more likely happy when the quality of work is high, that is when their job consists of creative and cognitive tasks and when they have a feeling of independence.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.
Resumo:
The presentation consists of work-in-progress metrics of #digitalkoot, the crowdsourcing project launched by National Library of Finland
Resumo:
Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.