35 resultados para Optical modulation formats
Resumo:
Multilevel converters provide an attractive solution to bring the benefits of speed-controlled rotational movement to high-power applications. Therefore, multilevel inverters have attracted wide interest in both the academic community and in the industry for the past two decades. In this doctoral thesis, modulation methods suitable especially for series connected H-bridge multilevel inverters are discussed. A concept of duty cycle modulation is presented and its modification is proposed. These methods are compared with other well-known modulation schemes, such as space-vector pulse width modulation and carrier-based modulation schemes. The advantage of the modified duty-cycle modulation is its algorithmic simplicity. A similar mathematical formulation for the original duty cycle modulation is proposed. The modified duty cycle modulation is shown to produce well-formed phase-to-neutral voltages that have lower total harmonic distortion than the space-vector pulse width modulation and the duty cycle modulation. The space-vector-based solution and the duty cycle modulation, on the other hand, result in a better-quality line-to-line voltage and current waveform. The voltage of the DC links in the modules of the series-connected H-bridge inverter are shown to fluctuate while they are under load. The fluctuation causes inaccuracies in the voltage production, which may result in a failure of the flux estimator in the controller. An extension for upper-level modulation schemes, which changes the switching instants of the inverter so that the output voltage meets the reference voltage accurately regardless of the DC link voltages, is proposed. The method is shown to reduce the error to a very low level when a sufficient switching frequency is used. An appropriate way to organize the switching instants of the multilevel inverter is to make only one-level steps at a time. This causes restrictions on the dynamical features of the modulation schemes. The produced voltage vector cannot be rotated several tens of degrees in a single switching period without violating the above-mentioned one-level-step rule. The dynamical capabilities of multilevel inverters are analyzed in this doctoral thesis, and it is shown that the multilevel inverters are capable of operating even in dynamically demanding metal industry applications. In addition to the discussion on modulation schemes, an overvoltage in multilevel converter drives caused by cable reflection is addressed. The voltage reflection phenomenon in drives with long feeder cables causes premature insulation deterioration and also affects the commonmode voltage, which is one of the main reasons for bearing currents. Bearing currents, on the other hand, cause fluting in the bearings, which results in premature bearing failure. The reflection phenomenon is traditionally prevented by filtering, but in this thesis, a modulationbased filterless method to mitigate the overvoltage in multilevel drives is proposed. Moreover, the mitigation method can be implemented as an extension for upper-level modulation schemes. The method exploits the oscillations caused by two consecutive voltage edges so that the sum of the oscillations results in a mitigated peak of the overvoltage. The applicability of the method is verified by simulations together with experiments with a full-scale prototype.
Resumo:
In the modern warfare there is an active development of a new trend connected with a robotic warfare. One of the critical elements of robotics warfare systems is an automatic target recognition system, allowing to recognize objects, based on the data received from sensors. This work considers aspects of optical realization of such a system by means of NIR target scanning at fixed wavelengths. An algorithm was designed, an experimental setup was built and samples of various modern gear and apparel materials were tested. For pattern testing the samples of actively arm engaged armies camouflages were chosen. Tests were performed both in clear atmosphere and in the artificial extremely humid and hot atmosphere to simulate field conditions.
Resumo:
The aim of this study was to investigate herpes simplex virus type 1 (HSV-1)- and measles virus (MV)-induced cell death. HSV-1 with deletion in genes encoding infected cell protein (ICP)4 and protein kinase Us3 (d120) induced apoptosis and cathepsin activation in epithelial (HEp-2) and monocytic (U937) cells. Inhibition of cathepsin activity decreased the amount of d120-induced apoptosis indicating that d120-induced apoptosis could be cathepsin-mediated. Also, HSV-1 infection increased caspase activation suggesting that d120-induced apoptosis is probably caspase-mediated. Cystatin treatment decreased the activity of cathepsins and the replication of HSV-1 indicating that cathepsins contribute to HSV-1 infection. Interestingly, d120 induced also necroptosis in monocytic cells. This is the first report on necroptosis in HSV-1- infected cells. MV induced apoptosis in uninfected bystander T lymphocytes, probably via interaction of MV-infected monocytes with uninfected lymphocytes. The expression of death receptor Fas was clearly increased on the surface of lymphocytes. The number of apoptotic cells and the activation of cathepsins and caspases were increased in MVinfected U937 cells suggesting that MV-induced apoptosis could be cathepsin- and caspase-mediated. Cystatin treatment inhibited cathepsin activities but not MV-induced apoptosis. Besides HSV-1-induced apoptosis, innate immune responses were studied in HSV-1-infection. HSV-1 viruses with either ICP4 and Us3, or Us3 deletion only, increased the expression of Toll-like receptor (TLR)3 and stimulated its downstream pathways leading to increased expression of type I interferon gene and to functional interferons. These findings suggest that besides controlling apoptosis, HSV-1 ICP4 and Us3 genes are involved in the control of TLR3 response in infected cell.
Resumo:
The objective of this master’s thesis is to investigate the loss behavior of three-level ANPC inverter and compare it with conventional NPC inverter. The both inverters are controlled with mature space vector modulation strategy. In order to provide the comparison both accurate and detailed enough NPC and ANPC simulation models should be obtained. The similar control model of SVM is utilized for both NPC and ANPC inverter models. The principles of control algorithms, the structure and description of models are clarified. The power loss calculation model is based on practical calculation approaches with certain assumptions. The comparison between NPC and ANPC topologies is presented based on results obtained for each semiconductor device, their switching and conduction losses and efficiency of the inverters. Alternative switching states of ANPC topology allow distributing losses among the switches more evenly, than in NPC inverter. Obviously, the losses of a switching device depend on its position in the topology. Losses distribution among the components in ANPC topology allows reducing the stress on certain switches, thus losses are equally distributed among the semiconductors, however the efficiency of the inverters is the same. As a new contribution to earlier studies, the obtained models of SVM control, NPC and ANPC inverters have been built. Thus, this thesis can be used in further more complicated modelling of full-power converters for modern multi-megawatt wind energy conversion systems.
Resumo:
In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.
Resumo:
A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.
Resumo:
This Master’s Thesis is dedicated to the investigation and testing conventional and nonconventional Kramers-Kronig relations on simulated and experimentally measured spectra. It is done for both linear and nonlinear optical spectral data. Big part of attention is paid to the new method of obtaining complex refractive index from a transmittance spectrum without direct information of the sample thickness. The latter method is coupled with terahertz tome-domain spectroscopy and Kramers-Kronig analysis applied for testing the validity of complex refractive index. In this research precision of data inversion is evaluated by root-mean square error. Testing of methods is made over different spectral range and implementation of this methods in future is considered.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Reactive arthritis (ReA) is an inflammatory joint disease, which belongs to the group of Spondyloarthritis (SpA). It may occur after infections with certain gram-negative bacteria such as Salmonella and Yersinia. SpAs are strongly associated with the human leucocyte antigen (HLA)-B27. Despite active research, the mechanism by which HLA-B27 causes disease susceptibility is still unknown. However, HLA-B27 has a tendency to misfold during assembly. It is possible that the misfolding of HLA-B27 could alter signaling pathways and/or molecules involved in inflammatory response in cells. We have earlier discovered that in HLA-B27-positive cells the interaction between the host and causative bacteria is disturbed. Our recent studies indicate that the expression of HLA-B27 may alter certain signaling molecules by disturbing their activation. The aim of this study was to investigate whether the expression of HLA-B27 disturbs the signaling molecules, especially the phosphorylation of transcription factor STAT1. STAT1 is an important mediator of inflammatory responses. Our results show that the phosphorylation of the STAT1 is significantly altered in HLA-B27-expressing U937 monocytic cells compared with control cells. STAT1 tyrosine 701 is more strongly phosphorylated in HLAB27- expressing cells; whereas the phosphorylation of STAT1 serine 727 is prolonged. Phosphorylation of STAT1 was discovered to be dependent on protein kinase PKR. Furthermore, we found out that the expression of posttranscriptional gene regulator HuR was altered in HLA-B27-expressing cells. We also detected that HLA-B27-positive cells secrete more interleukin 6, which is an important mediator of inflammation. These results help to understand how HLA-B27 may confer susceptibility to SpAs.
Resumo:
A fast changing dynamic business environment is becoming a norm today in different areas, including retailing. The aims of this study are to explore existing store formats of branded sportswear retailing and their characteristics, and to identify the trends which might shape their future. The ultimate goal, however, is to create and analyze images of the future of branded sportswear retailing in Germany 2030 by applying the methods of futures studies. As theoretical background, the cyclical theories of retail evolution have been used. Empirical material is obtained by conducting a Disaggregative Policy Delphi method based study, the aim of which is to obtain well–argued qualitative and quantitative information from experts about store format development in order to create future images based on cluster analysis. Flagship stores, Concept stores, Factory Outlets, Pop-up stores, E-commerce and M-commerce represent the diversity of store formats existing in Germany today. They have different aims, roles, and advantages which retailers try to leverage. However such trends as multichannel integration, technological enhancements, growing popularity of online channels, switching customer behaviors, customization and personalization, and economic turbulence might shape the future of sportswear retailing. Four future images constructed: “Multichannel Integration”, “Smart and Personal”, “Consumer Diversification”, and “Always Online” – describe alternative futures of German branded sportswear store formats in 2030 based on different trends, assumptions, hopes and fears. They also point out uncertainties in retailing such as cannibalization of channels, the growing power and expectations of consumers, the complexity of multichannel synergies, and the switching customer behavior. Constructed future images, thus, provide readers with an opportunity to imagine and explore alternative states of the future of branded sportswear store formats in Germany 2030. They could serve well as a tool to communicate the results to decision–makers, compare them, and to analyze to inspire and direct actions for a better future tomorrow.
Resumo:
The structure and optical properties of thin films based on C60
Resumo:
Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.
Resumo:
Quantum computation and quantum communication are two of the most promising future applications of quantum mechanics. Since the information carriers used in both of them are essentially open quantum systems it is necessary to understand both quantum information theory and the theory of open quantum systems in order to investigate realistic implementations of such quantum technologies. In this thesis we consider the theory of open quantum systems from a quantum information theory perspective. The thesis is divided into two parts: review of the literature and original research. In the review of literature we present some important definitions and known results of open quantum systems and quantum information theory. We present the definitions of trace distance, two channel capacities and superdense coding capacity and give a reasoning why they can be used to represent the transmission efficiency of a communication channel. We also show derivations of some properties useful to link completely positive and trace preserving maps to trace distance and channel capacities. With the help of these properties we construct three measures of non-Markovianity and explain why they detect non-Markovianity. In the original research part of the thesis we study the non-Markovian dynamics in an experimentally realized quantum optical set-up. For general one-qubit dephasing channels we calculate the explicit forms of the two channel capacities and the superdense coding capacity. For the general two-qubit dephasing channel with uncorrelated local noises we calculate the explicit forms of the quantum capacity and the mutual information of a four-letter encoding. By using the dynamics in the experimental implementation as a set of specific dephasing channels we also calculate and compare the measures in one- and two-qubit dephasing channels and study the options of manipulating the environment to achieve revivals and higher transmission rates in superdense coding protocol with dephasing noise. Kvanttilaskenta ja kvanttikommunikaatio ovat kaksi puhutuimmista tulevaisuuden kvanttimekaniikan käytännön sovelluksista. Koska molemmissa näistä informaatio koodataan systeemeihin, jotka ovat oleellisesti avoimia kvanttisysteemejä, sekä kvantti-informaatioteorian, että avointen kvanttisysteemien tuntemus on välttämätöntä. Tässä tutkielmassa käsittelemme avointen kvanttisysteemien teoriaa kvantti-informaatioteorian näkökulmasta. Tutkielma on jaettu kahteen osioon: kirjallisuuskatsaukseen ja omaan tutkimukseen. Kirjallisuuskatsauksessa esitämme joitakin avointen kvanttisysteemien ja kvantti-informaatioteorian tärkeitä määritelmiä ja tunnettuja tuloksia. Esitämme jälkietäisyyden, kahden kanavakapasiteetin ja superdense coding -kapasiteetin määritelmät ja esitämme perustelun sille, miksi niitä voidaan käyttää kuvaamaan kommunikointikanavan lähetystehokkuutta. Näytämme myös todistukset kahdelle ominaisuudelle, jotka liittävät täyspositiiviset ja jäljensäilyttävät kuvaukset jälkietäisyyteen ja kanavakapasiteetteihin. Näiden ominaisuuksien avulla konstruoimme kolme epä-Markovisuusmittaa ja perustelemme, miksi ne havaitsevat dynamiikan epä-Markovisuutta. Oman tutkimuksen osiossa tutkimme epä-Markovista dynamiikkaa kokeellisesti toteutetussa kvanttioptisessa mittausjärjestelyssä. Yleisen yhden qubitin dephasing-kanavan tapauksessa laskemme molempien kanavakapasiteettien ja superdense coding -kapasiteetin eksplisiittiset muodot. Yleisen kahden qubitin korreloimattomien ympäristöjen dephasing-kanavan tapauksessa laskemme yhteisen informaation lausekkeen nelikirjaimisessa koodauksessa ja kvanttikanavakapasiteetin. Käyttämällä kokeellisen mittajärjestelyn dynamiikkoja esimerkki dephasing-kanavina me myös laskemme konstruoitujen epä-Markovisuusmittojen arvot ja vertailemme niitä yksi- ja kaksi-qubitti-dephasing-kanavissa. Lisäksi käyttäen kokeellisia esimerkkikanavia tutkimme, kuinka ympäristöä manipuloimalla superdense coding –skeemassa voidaan saada yhteinen informaatio ajoittain kasvamaan tai saavuttaa kaikenkaikkiaan korkeampi lähetystehokkuus.
Resumo:
Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.