27 resultados para Opinion mining, Sentiment and Topic analysis, Annotation guidelines
Resumo:
The amount of installed wind power has been growing exponentially during the past ten years. As wind turbines have become a significant source of electrical energy, the interactions between the turbines and the electric power network need to be studied more thoroughly than before. Especially, the behavior of the turbines in fault situations is of prime importance; simply disconnecting all wind turbines from the network during a voltage drop is no longer acceptable, since this would contribute to a total network collapse. These requirements have been a contributor to the increased role of simulations in the study and design of the electric drive train of a wind turbine. When planning a wind power investment, the selection of the site and the turbine are crucial for the economic feasibility of the installation. Economic feasibility, on the other hand, is the factor that determines whether or not investment in wind power will continue, contributing to green electricity production and reduction of emissions. In the selection of the installation site and the turbine (siting and site matching), the properties of the electric drive train of the planned turbine have so far been generally not been taken into account. Additionally, although the loss minimization of some of the individual components of the drive train has been studied, the drive train as a whole has received less attention. Furthermore, as a wind turbine will typically operate at a power level lower than the nominal most of the time, efficiency analysis in the nominal operating point is not sufficient. This doctoral dissertation attempts to combine the two aforementioned areas of interest by studying the applicability of time domain simulations in the analysis of the economicfeasibility of a wind turbine. The utilization of a general-purpose time domain simulator, otherwise applied to the study of network interactions and control systems, in the economic analysis of the wind energy conversion system is studied. The main benefits of the simulation-based method over traditional methods based on analytic calculation of losses include the ability to reuse and recombine existing models, the ability to analyze interactions between the components and subsystems in the electric drive train (something which is impossible when considering different subsystems as independent blocks, as is commonly done in theanalytical calculation of efficiencies), the ability to analyze in a rather straightforward manner the effect of selections other than physical components, for example control algorithms, and the ability to verify assumptions of the effects of a particular design change on the efficiency of the whole system. Based on the work, it can be concluded that differences between two configurations can be seen in the economic performance with only minor modifications to the simulation models used in the network interaction and control method study. This eliminates the need ofdeveloping analytic expressions for losses and enables the study of the system as a whole instead of modeling it as series connection of independent blocks with no lossinterdependencies. Three example cases (site matching, component selection, control principle selection) are provided to illustrate the usage of the approach and analyze its performance.
Resumo:
The purpose of this study is to examine macroeconomic indicators‟ and technical analysis‟ ability to signal market crashes. Indicators examined were Yield Spread, The Purchasing Managers Index and the Consumer Confidence Index. Technical Analysis indicators were moving average, Moving Average Convergence-Divergence and Relative Strength Index. We studied if commonly used macroeconomic indicators can be used as a warning system for a stock market crashes as well. The hypothesis is that the signals of recession can be used as signals of stock market crash and that way a basis for a hedging strategy. The data is collected from the U.S. markets from the years 1983-2010. Empirical studies show that macroeconomic indicators have been able to explain the future GDP development in the U.S. in research period and they were statistically significant. A hedging strategy that combined the signals of yield spread and Consumer Confidence Index gave most useful results as a basis of a hedging strategy in selected time period. It was able to outperform buy-and-hold strategy as well as all of the technical indicator based hedging strategies.
Resumo:
Ett ämne som väckt intresse både inom industrin och forskningen är hantering av kundförhållanden (CRM, eng. Customer Relationship Management), dvs. en kundorienterad affärsstrategi där företagen från att ha varit produktorienterade väljer att bli mera kundcentrerade. Numera kan kundernas beteende och aktiviteter lätt registreras och sparas med hjälp av integrerade affärssystem (ERP, eng. Enterprise Resource Planning) och datalager (DW, eng. Data Warehousing). Kunder med olika preferenser och köpbeteende skapar sin egen ”signatur” i synnerhet via användningen av kundkort, vilket möjliggör mångsidig modellering av kundernas köpbeteende. För att få en översikt av kundernas köpbeteende och deras lönsamhet, används ofta kundsegmentering som en metod för att indela kunderna i grupper utgående från deras likheter. De mest använda metoderna för kundsegmentering är analytiska modeller konstruerade för en viss tidsperiod. Dessa modeller beaktar inte att kundernas beteende kan förändras med tiden. I föreliggande avhandling skapas en holistisk översikt av kundernas karaktär och köpbeteende som utöver de konventionella segmenteringsmodellerna även beaktar dynamiken i köpbeteendet. Dynamiken i en kundsegmenteringsmodell innefattar förändringar i segmentens struktur och innehåll, samt förändringen av individuella kunders tillhörighet i ett segment (s.k migrationsanalyser). Vardera förändringen modelleras, analyseras och exemplifieras med visuella datautvinningstekniker, främst med självorganiserande kartor (SOM, eng. Self-Organizing Maps) och självorganiserande tidskartor (SOTM), en vidareutveckling av SOM. Visualiseringen anteciperas underlätta tolkningen av identifierade mönster och göra processen med kunskapsöverföring mellan den som gör analysen och beslutsfattaren smidigare. Asiakkuudenhallinta (CRM) eli organisaation muuttaminen tuotepainotteisesta asiakaskeskeiseksi on herättänyt mielenkiintoa niin yliopisto- kuin yritysmaailmassakin. Asiakkaiden käyttäytymistä ja toimintaa pystytään nykyään helposti tallentamaan ja varastoimaan toiminnanohjausjärjestelmien ja tietovarastojen avulla; asiakkaat jättävät jatkuvasti piirteistään ja ostokäyttäytymisestään kertovia tietojälkiä, joita voidaan analysoida. On tavallista, että asiakkaat poikkeavat toisistaan eri tavoin, ja heidän mieltymyksensä kuten myös ostokäyttäytymisensä saattavat olla hyvinkin erilaisia. Asiakaskäyttäytymisen monimuotoisuuteen ja tuottavuuteen paneuduttaessa käytetäänkin laajalti asiakassegmentointia eli asiakkaiden jakamista ryhmiin samankaltaisuuden perusteella. Perinteiset asiakassegmentoinnin ratkaisut ovat usein yksittäisiä analyyttisia malleja, jotka on tehty tietyn aikajakson perusteella. Tämän vuoksi ne monesti jättävät huomioimatta sen, että asiakkaiden käyttäytyminen saattaa ajan kuluessa muuttua. Tässä väitöskirjassa pyritäänkin tarjoamaan holistinen kuva asiakkaiden ominaisuuksista ja ostokäyttäytymisestä tarkastelemalla kahta muutosvoimaa tiettyyn aikarajaukseen perustuvien perinteisten segmentointimallien lisäksi. Nämä kaksi asiakassegmentointimallin dynamiikkaa ovat muutokset segmenttien rakenteessa ja muutokset yksittäisten asiakkaiden kuulumisessa ryhmään. Ensimmäistä dynamiikkaa lähestytään ajallisen asiakassegmentoinnin avulla, jossa visualisoidaan ajan kuluessa tapahtuvat muutokset segmenttien rakenteissa ja profiileissa. Toista dynamiikkaa taas lähestytään käyttäen nk. segmenttisiirtymien analyysia, jossa visuaalisin keinoin tunnistetaan samantyyppisesti segmentistä toiseen vaihtavat asiakkaat. Visualisoinnin tehtävänä on tukea havaittujen kaavojen tulkitsemista sekä helpottaa tiedonsiirtoa analysoijan ja päättäjien välillä. Visuaalisia tiedonlouhintamenetelmiä, kuten itseorganisoivia karttoja ja niiden laajennuksia, käytetään osoittamaan näiden menetelmien hyödyllisyys sekä asiakkuudenhallinnassa yleisesti että erityisesti asiakassegmentoinnissa.
Resumo:
This study will concentrate on Product Data Management (PDM) systems, and sheet metal design features and classification. In this thesis, PDM is seen as an individual system which handles all product-related data and information. The meaning of relevant data is to take the manufacturing process further with fewer errors. The features of sheet metals are giving more information and value to the designed models. The possibility of implementing PDM and sheet metal features recognition are the core of this study. Their integration should make the design process faster and manufacturing-friendly products easier to design. The triangulation method is the basis for this research. The sections of this triangle are: scientific literature review, interview using the Delphi method and the author’s experience and observations. The main key findings of this study are: (1) the area of focus in triangle (the triangle of three different point of views: business, information exchange and technical) depends on the person’s background and their role in the company, (2) the classification in the PDM system (and also in the CAD system) should be done using the materials, tools and machines that are in use in the company and (3) the design process has to be more effective because of the increase of industrial production, sheet metal blank production and the designer’s time spent on actual design and (4) because Design For Manufacture (DFM) integration can be done with CAD-programs, DFM integration with the PDM system should also be possible.
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
Master’s thesis Biomass Utilization in PFC Co-firing System with the Slagging and Fouling Analysis is the study of the modern technologies of different coal-firing systems: PFC system, FB system and GF system. The biomass co-fired with coal is represented by the research of the company Alstom Power Plant. Based on the back ground of the air pollution, greenhouse effect problems and the national fuel security today, the bioenergy utilization is more and more popular. However, the biomass is promoted to burn to decrease the emission amount of carbon dioxide and other air pollutions, new problems form like slagging and fouling, hot corrosion in the firing systems. Thesis represent the brief overview of different coal-firing systems utilized in the world, and focus on the biomass-coal co-firing in the PFC system. The biomass supply and how the PFC system is running are represented in the thesis. Additionally, the new problems of hot corrosion, slagging and fouling are mentioned. The slagging and fouling problem is simulated by using the software HSC Chemistry 6.1, and the emissions comparison between coal-firing and co-firing are simulated as well.
Resumo:
The Finnish legislation requires for a safe and secure learning environment. However, the comprehensive, risk based safety and security management (SSM) and the management commitment in the implementation and development of the SSM are not mentioned in the legislation. Multiple institutions, operators and researchers have studied and developed safety and security in educational institutions over the past decade. Typically the approach has been fragmented and without bringing up the importance of the comprehensive SSM. The development needs of the safety and security operations in universities have been studied. However, in universities of applied sciences (UASs) and in elementary schools (ESs), the performance level, strengths and weaknesses of the comprehensive SSM have not been studied. The objective of this study was to develop the comprehensive, risk based SSM of educational institutions by developing the new Asteri consultative auditing process and study its effects on auditees. Furthermore, the performance level in the comprehensive SSM in UASs and ESs were studied using Asteri and the TUTOR model developed by the Keski-Uusimaa Department for Rescue Services. In addition, strengths, development needs and differences were identified. In total, 76 educational institutions were audited between the years 2011 and 2014. The study is based on logical empiricism, and an observational applied research design was used. Auditing, observation and an electronic survey were used for data collection. Statistical analysis was used to analyze the collected information. In addition, thematic analysis was used to analyze the development areas of the organizations mentioned by the respondents in the survey. As one of the main contributions, this research presents the new Asteri consultative auditing process. Organizations with low performance levels on the audited subject benefit the most from the Asteri consultative auditing process. Asteri may be usable in many different types of audits, not only in SSM audits. As a new result, this study provides new knowledge on attitudes related to auditing. According to the research findings, auditing may generate negative attitudes and the auditor should take them into account when planning and preparing for audits. Negative attitudes can be compensated by producing added value, objectivity and positivity for the audit and, thus, improve the positive effects of auditing on knowledge and skills. Moreover, as the results of this study shows, auditing safety and security issues do not increase feelings of insecurity, but rather increase feelings of safety and security when using the new Asteri consultative auditing process with the TUTOR model. The results showed that the SSM in the audited UASs was statistically significantly more advanced than that in the audited ESs. However, there is still room for improvement in the ESs and the UASs as the approach to the SSM was fragmented. It can be assumed that the majority of Finnish UASs and ESs do not likely meet the basic level of the comprehensive, risk based the SSM.