19 resultados para N fertilizer addition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of pulp and paper mill (PPM) sludge in agriculture and forestry has been acknowledged as soil amendments and a plant nutrient source. The main objectives of this study were to evaluate the total cost of the use of recycled nutrients from PPM sludge in fast growing pulpwood production, and the financial profitability of fast growing pulpwood production with the use of these recycled nutrients. The investment and production costs of fast growing pulpwood plantation were directly acquired from a previous research, while the other data was compiled through different studies. The total cost of the use of PPM sludge was evaluated based on assumed factors. Discounted cash flow method was used to evaluate the financial profitability, using NPV and IRR as indicators. The results of estimated sludge nutrient contents were 16.2 g N, 2.9 g P, and 2.4 g K kg-1 of dry sludge. The sludge application rate was estimated at 1.36 Mg/ha in the first year. The total cost of the use of PPM sludge involved transport and spreading cost of US$49.15/dry ton. The fertilization cost applied in the financial model was designed in 3 different options and their results were as follows: option (1) was taken directly from the reference research (US$97/ha); option (2) was the use of sludge alone (US$66.75/ha); and option (3) was the use of sludge and TSP fertilizer (US$83.80/ha). The average NPV without discounting was US$248,180 while the IRRs ranged between approximately 3-4% with an average of 3.63%. Although option (2) and (3) contributed to higher IRRs compared to option (1), this increase was still not significant as the IRR was not sensitive to the total fertilization cost. The advantages are that this practice can be performed at a lower cost and the application rate can be still increased if necessary. It is better for forest plantations compared to agriculture and consequently supports reforestation program. In addition, it can be similarly applied in wood biomass production. A disadvantage is that the IRRs were not very favorable compared to the criterion of 11%. The sludge high in C:N ratio can cause nitrogen immobilization, and regulatory concerns may restrict and complicate the use of sludge landspreading and contribute to additional costs and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Food production account for significant share of global environmental impacts. Impacts are global warming, fresh water use, land use and some non-renewable substance consumption like phosphorous fertilizers. Because of non-sustainable food production, the world is heading to different crises. Both food- and freshwater crises and also land area and phosphorous fertilizer shortages are one of many challenges to overcome in near future. The major protein sources production amounts, their impacts on environment and uses are show in this thesis. In this thesis, a more sustainable than conventional way of biomass production for food use is introduced. These alternative production methods are photobioreactor process and syngas-based bioreactor process. The processes’ energy consumption and major inputs are viewed. Their environmental impacts are estimated. These estimations are the compared to conventional protein production’s impacts. The outcome of the research is that, the alternative methods can be more sustainable solutions for food production than conventional production. However, more research is needed to verify the exact impacts. Photobioreactor is more sustainable process than syngas-based bioreactor process, but it is more location depended and uses more land area than syngas-based process. In addition, the technology behind syngas-based application is still developing and it can be more efficient in the future.