20 resultados para Multi-objective optimization problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitavoiteoptimointia käytetään laajasti auto- ja lentokoneteollisuudessa suunnittelun apu-välineenä, mutta muuten sen käyttö ei ole vielä yleistynyt laajemmin. Tässä työssä on tarkoi-tus tehdä laaja esiselvitys monitavoiteoptimoinnista ja sen hyödyntämisestä työkonepuomien suunnittelun apuvälineenä. Työ tehtiin yhteistyössä Lappeenrannan teknillisen yliopiston ja projektiin osallistuvien FIMA ry:n jäsenten kanssa. Tulosten ja johtopäätösten perusteella tutkimusta tullaan mahdollisesti jatkamaan Tampereen teknillisen yliopiston tohtorikoulussa. Työssä selvitettiin mitä monitavoiteoptimoinnilla tarkoitetaan ja esitellään sen etenemisvai-heet. Lisäksi työssä esitellään lyhyesti kuusi monitavoiteoptimointiohjelmistoa pääominai-suuksineen sekä selvitetään ohjelmistolisenssien hintoja. Työssä optimointiin perehdyttiin teleskooppipuomin jatkoksen case -tutkimuksen avulla. Ni-velpuomit ja nivel- ja teleskooppipuomien yhdistelmät rajattiin työn ulkopuolelle. Työssä muodostettiin teleskooppipuomin jatkoksen poikkileikkauksen optimointityökalu. Sen avulla voidaan laskea luotettavasti optimit mitat painon suhteen niin, että lommahdusrajoitteet, tai-vutusvastus sekä taipuma otetaan huomioon ja samalla voitiin arvioida optimointiprosessin etuja ja haittoja. Optimoinnin tuloksia voidaan käyttää edelleen monitavoiteoptimoinnin lähtö-arvoina. Optimointi tehtiin Matlabin avulla ja tulokset verifioitiin AGIFAP -elementtimenetelmäohjelmistolla. Optimoituja tuloksia tutkittiin edelleen Femap -elementtimenetelmäohjelmistolla, jolla haettiin vuorovaikutussuhteita monitavoiteoptimoinnin tueksi. FE -analyysien avulla muodostettiin kaksi apuohjelmaa optimoinnin tueksi. Työssä havaittiin, että teleskooppipuomin jatkoksen optimointi vaatii FE -analyysiohjelmiston rinnalleen, jotta voidaan varmistua rakenteen kestävyydestä ja optimoida väsymiskestävyyt-tä. Liukupalojen vaikutus teleskooppipuomin käytökseen sekä väsymiskestävyyden optimoin-ti vaatii jatkotutkimusta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blast furnace is the main ironmaking production unit in the world which converts iron ore with coke and hot blast into liquid iron, hot metal, which is used for steelmaking. The furnace acts as a counter-current reactor charged with layers of raw material of very different gas permeability. The arrangement of these layers, or burden distribution, is the most important factor influencing the gas flow conditions inside the furnace, which dictate the efficiency of the heat transfer and reduction processes. For proper control the furnace operators should know the overall conditions in the furnace and be able to predict how control actions affect the state of the furnace. However, due to high temperatures and pressure, hostile atmosphere and mechanical wear it is very difficult to measure internal variables. Instead, the operators have to rely extensively on measurements obtained at the boundaries of the furnace and make their decisions on the basis of heuristic rules and results from mathematical models. It is particularly difficult to understand the distribution of the burden materials because of the complex behavior of the particulate materials during charging. The aim of this doctoral thesis is to clarify some aspects of burden distribution and to develop tools that can aid the decision-making process in the control of the burden and gas distribution in the blast furnace. A relatively simple mathematical model was created for simulation of the distribution of the burden material with a bell-less top charging system. The model developed is fast and it can therefore be used by the operators to gain understanding of the formation of layers for different charging programs. The results were verified by findings from charging experiments using a small-scale charging rig at the laboratory. A basic gas flow model was developed which utilized the results of the burden distribution model to estimate the gas permeability of the upper part of the blast furnace. This combined formulation for gas and burden distribution made it possible to implement a search for the best combination of charging parameters to achieve a target gas temperature distribution. As this mathematical task is discontinuous and non-differentiable, a genetic algorithm was applied to solve the optimization problem. It was demonstrated that the method was able to evolve optimal charging programs that fulfilled the target conditions. Even though the burden distribution model provides information about the layer structure, it neglects some effects which influence the results, such as mixed layer formation and coke collapse. A more accurate numerical method for studying particle mechanics, the Discrete Element Method (DEM), was used to study some aspects of the charging process more closely. Model charging programs were simulated using DEM and compared with the results from small-scale experiments. The mixed layer was defined and the voidage of mixed layers was estimated. The mixed layer was found to have about 12% less voidage than layers of the individual burden components. Finally, a model for predicting the extent of coke collapse when heavier pellets are charged over a layer of lighter coke particles was formulated based on slope stability theory, and was used to update the coke layer distribution after charging in the mathematical model. In designing this revision, results from DEM simulations and charging experiments for some charging programs were used. The findings from the coke collapse analysis can be used to design charging programs with more stable coke layers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this thesis is twofold. The first and major part is devoted to sensitivity analysis of various discrete optimization problems while the second part addresses methods applied for calculating measures of solution stability and solving multicriteria discrete optimization problems. Despite numerous approaches to stability analysis of discrete optimization problems two major directions can be single out: quantitative and qualitative. Qualitative sensitivity analysis is conducted for multicriteria discrete optimization problems with minisum, minimax and minimin partial criteria. The main results obtained here are necessary and sufficient conditions for different stability types of optimal solutions (or a set of optimal solutions) of the considered problems. Within the framework of quantitative direction various measures of solution stability are investigated. A formula for a quantitative characteristic called stability radius is obtained for the generalized equilibrium situation invariant to changes of game parameters in the case of the H¨older metric. Quality of the problem solution can also be described in terms of robustness analysis. In this work the concepts of accuracy and robustness tolerances are presented for a strategic game with a finite number of players where initial coefficients (costs) of linear payoff functions are subject to perturbations. Investigation of stability radius also aims to devise methods for its calculation. A new metaheuristic approach is derived for calculation of stability radius of an optimal solution to the shortest path problem. The main advantage of the developed method is that it can be potentially applicable for calculating stability radii of NP-hard problems. The last chapter of the thesis focuses on deriving innovative methods based on interactive optimization approach for solving multicriteria combinatorial optimization problems. The key idea of the proposed approach is to utilize a parameterized achievement scalarizing function for solution calculation and to direct interactive procedure by changing weighting coefficients of this function. In order to illustrate the introduced ideas a decision making process is simulated for three objective median location problem. The concepts, models, and ideas collected and analyzed in this thesis create a good and relevant grounds for developing more complicated and integrated models of postoptimal analysis and solving the most computationally challenging problems related to it.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.