33 resultados para Monte-Carlo method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tämän työn tarkoituksena oli tarkastella kohdeorganisaation hankintaprosessin suorituskykyä. Tutkimuksen päämääränä oli tuottaa yritykselle sellaista tietoa ja arviointikriteerejä, joiden avulla yritys voi kehittää valmiuksiaan oman suorituskyvyn tehokkaampaan arviointiin tulevaisuudessa. Tutkielma tehtiin Skanska Oy:n osto-osastolle Helsinkiin. Tutkimuksen kohteeksi valittiin kausisopimusten hankintaprosessi epäsuorissa hankinnoissa, kotimaisilla markkinoilla. Keskitetyn kausisopimusten hankintaprosessin tarkoituksena on tuottaa yritykselle kilpailukykyisiä sopimuksia sekä saavuttaa prosessin parempi hallinta ja läpinäkyvyys. Tietoa tutkimuksen kohteena olevasta prosessista kerättiin haastatteluilla ja keskustelutuokioilla sekä yrityksen dokumenteista. Aineiston keräämisen kautta pyrittiin saamaan syvempi kuva prosessin toiminnasta, sen ongelmakohdista sekä niiden syistä ja seurauksista. Toisen tarkastelunäkökulman prosessin arvioinnille tarjosi läpimenoajan mittaaminen. Saatua aineistoa luokiteltiin vika- ja vaikutusanalyysiin pohjautuvalla mallilla sekä Monte Carlo – simulaatiomenetelmään perustuvalla ohjelmalla. Työn tuloksena esitetään tutkimuksen kohteena olevalle prosessille sopivia kehitystoimenpiteitä sekä suositeltavia prosessin mittaamisalueita.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents models and methods that have been used in producing forecasts of population growth. The work is intended to emphasize the reliability bounds of the model forecasts. Leslie model and various versions of logistic population models are presented. References to literature and several studies are given. A lot of relevant methodology has been developed in biological sciences. The Leslie modelling approach involves the use of current trends in mortality,fertility, migration and emigration. The model treats population divided in age groups and the model is given as a recursive system. Other group of models is based on straightforward extrapolation of census data. Trajectories of simple exponential growth function and logistic models are used to produce the forecast. The work presents the basics of Leslie type modelling and the logistic models, including multi- parameter logistic functions. The latter model is also analysed from model reliability point of view. Bayesian approach and MCMC method are used to create error bounds of the model predictions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation is based on 5 articles which deal with reaction mechanisms of the following selected industrially important organic reactions: 1. dehydrocyclization of n-butylbenzene to produce naphthalene 2. dehydrocyclization of 1-(p-tolyl)-2-methylbutane (MB) to produce 2,6-dimethylnaphthalene 3. esterification of neopentyl glycol (NPG) with different carboxylic acids to produce monoesters 4. skeletal isomerization of 1-pentene to produce 2-methyl-1-butene and 2-methyl-2-butene The results of initial- and integral-rate experiments of n-butylbenzene dehydrocyclization over selfmade chromia/alumina catalyst were applied when investigating reaction 2. Reaction 2 was performed using commercial chromia/alumina of different acidity, platina on silica and vanadium/calcium/alumina as catalysts. On all catalysts used for the dehydrocyclization, major reactions were fragmentation of MB and 1-(p-tolyl)-2-methylbutenes (MBes), dehydrogenation of MB, double bond transfer, hydrogenation and 1,6-cyclization of MBes. Minor reactions were 1,5-cyclization of MBes and methyl group fragmentation of 1,6- cyclization products. Esterification reactions of NPG were performed using three different carboxylic acids: propionic, isobutyric and 2-ethylhexanoic acid. Commercial heterogeneous gellular (Dowex 50WX2), macroreticular (Amberlyst 15) type resins and homogeneous para-toluene sulfonic acid were used as catalysts. At first NPG reacted with carboxylic acids to form corresponding monoester and water. Then monoester esterified with carboxylic acid to form corresponding diester. In disproportionation reaction two monoester molecules formed NPG and corresponding diester. All these three reactions can attain equilibrium. Concerning esterification, water was removed from the reactor in order to prevent backward reaction. Skeletal isomerization experiments of 1-pentene were performed over HZSM-22 catalyst. Isomerization reactions of three different kind were detected: double bond, cis-trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tässä diplomityössä on esitetty työn yhteydessä toteutetun Serpent-ARES-laskentaketjun muodostamiseksi tarvittavat toimenpiteet. ARES-reaktorisydän-simulaattorissa tarvittavien homogenisoitujen ryhmävakiokirjastojen muodostaminen Serpentiä käyttäen tekee laskentaketjusta muiden käytössä olevien reaktorisydämen laskentaketjujen mahdollisista virhelähteistä riippumattoman. Monte Carlo-laskentamenetelmään perustuvaa reaktorifysiikan laskentaohjelmaa käyttämällä ryhmävakiokirjastot muodostetaan uudella menetelmällä ja näin saadaan viranomaiskäyttöön voimayhtiöiden käyttämistä menetelmistä riippumaton laskentaketju reaktorien turvallisuusmarginaalien laskentaan. Työn yhteydessä muodostetun laskentaketjun ja tehtyjen vaikutusalakirjastojen muodostamisrutiinien sekä parametrisovitteiden toimivuus on todettu laskemalla Olkiluoto 3 - reaktorin alkulatauksen säätösauvojen tehokkuuksia ja sammutusmarginaaleja eri olosuhteissa. Menetelmä on todettu toimivaksi parametrien pätevyysalueella ja saadut laskentatulokset ovat oikeaa suuruusluokkaa. Parametrimallin tarkkuutta ja pätevyysaluetta on syytä vielä kehittää, ennen kuin laskentaketjua voidaan käyttää varmentamaan muilla menetelmillä laskettujen tulosten oikeellisuutta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Digital business ecosystems (DBE) are becoming an increasingly popular concept for modelling and building distributed systems in heterogeneous, decentralized and open environments. Information- and communication technology (ICT) enabled business solutions have created an opportunity for automated business relations and transactions. The deployment of ICT in business-to-business (B2B) integration seeks to improve competitiveness by establishing real-time information and offering better information visibility to business ecosystem actors. The products, components and raw material flows in supply chains are traditionally studied in logistics research. In this study, we expand the research to cover the processes parallel to the service and information flows as information logistics integration. In this thesis, we show how better integration and automation of information flows enhance the speed of processes and, thus, provide cost savings and other benefits for organizations. Investments in DBE are intended to add value through business automation and are key decisions in building up information logistics integration. Business solutions that build on automation are important sources of value in networks that promote and support business relations and transactions. Value is created through improved productivity and effectiveness when new, more efficient collaboration methods are discovered and integrated into DBE. Organizations, business networks and collaborations, even with competitors, form DBE in which information logistics integration has a significant role as a value driver. However, traditional economic and computing theories do not focus on digital business ecosystems as a separate form of organization, and they do not provide conceptual frameworks that can be used to explore digital business ecosystems as value drivers—combined internal management and external coordination mechanisms for information logistics integration are not the current practice of a company’s strategic process. In this thesis, we have developed and tested a framework to explore the digital business ecosystems developed and a coordination model for digital business ecosystem integration; moreover, we have analysed the value of information logistics integration. The research is based on a case study and on mixed methods, in which we use the Delphi method and Internetbased tools for idea generation and development. We conducted many interviews with key experts, which we recoded, transcribed and coded to find success factors. Qualitative analyses were based on a Monte Carlo simulation, which sought cost savings, and Real Option Valuation, which sought an optimal investment program for the ecosystem level. This study provides valuable knowledge regarding information logistics integration by utilizing a suitable business process information model for collaboration. An information model is based on the business process scenarios and on detailed transactions for the mapping and automation of product, service and information flows. The research results illustrate the current cap of understanding information logistics integration in a digital business ecosystem. Based on success factors, we were able to illustrate how specific coordination mechanisms related to network management and orchestration could be designed. We also pointed out the potential of information logistics integration in value creation. With the help of global standardization experts, we utilized the design of the core information model for B2B integration. We built this quantitative analysis by using the Monte Carlo-based simulation model and the Real Option Value model. This research covers relevant new research disciplines, such as information logistics integration and digital business ecosystems, in which the current literature needs to be improved. This research was executed by high-level experts and managers responsible for global business network B2B integration. However, the research was dominated by one industry domain, and therefore a more comprehensive exploration should be undertaken to cover a larger population of business sectors. Based on this research, the new quantitative survey could provide new possibilities to examine information logistics integration in digital business ecosystems. The value activities indicate that further studies should continue, especially with regard to the collaboration issues on integration, focusing on a user-centric approach. We should better understand how real-time information supports customer value creation by imbedding the information into the lifetime value of products and services. The aim of this research was to build competitive advantage through B2B integration to support a real-time economy. For practitioners, this research created several tools and concepts to improve value activities, information logistics integration design and management and orchestration models. Based on the results, the companies were able to better understand the formulation of the digital business ecosystem and the importance of joint efforts in collaboration. However, the challenge of incorporating this new knowledge into strategic processes in a multi-stakeholder environment remains. This challenge has been noted, and new projects have been established in pursuit of a real-time economy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of exact coordinates of pebbles and fuel particles of pebble bed reactor modelling becoming possible in Monte Carlo reactor physics calculations is an important development step. This allows exact modelling of pebble bed reactors with realistic pebble beds without the placing of pebbles in regular lattices. In this study the multiplication coefficient of the HTR-10 pebble bed reactor is calculated with the Serpent reactor physics code and, using this multiplication coefficient, the amount of pebbles required for the critical load of the reactor. The multiplication coefficient is calculated using pebble beds produced with the discrete element method and three different material libraries in order to compare the results. The received results are lower than those from measured at the experimental reactor and somewhat lower than those gained with other codes in earlier studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents an analysis of recently enacted Russian renewable energy policy based on capacity mechanism. Considering its novelty and poor coverage by academic literature, the aim of the thesis is to analyze capacity mechanism influence on investors’ decision-making process. The current research introduces a number of approaches to investment analysis. Firstly, classical financial model was built with Microsoft Excel® and crisp efficiency indicators such as net present value were determined. Secondly, sensitivity analysis was performed to understand different factors influence on project profitability. Thirdly, Datar-Mathews method was applied that by means of Monte Carlo simulation realized with Matlab Simulink®, disclosed all possible outcomes of investment project and enabled real option thinking. Fourthly, previous analysis was duplicated by fuzzy pay-off method with Microsoft Excel®. Finally, decision-making process under capacity mechanism was illustrated with decision tree. Capacity remuneration paid within 15 years is calculated individually for each RE project as variable annuity that guarantees a particular return on investment adjusted on changes in national interest rates. Analysis results indicate that capacity mechanism creates a real option to invest in renewable energy project by ensuring project profitability regardless of market conditions if project-internal factors are managed properly. The latter includes keeping capital expenditures within set limits, production performance higher than 75% of target indicators, and fulfilling localization requirement, implying producing equipment and services within the country. Occurrence of real option shapes decision-making process in the following way. Initially, investor should define appropriate location for a planned power plant where high production performance can be achieved, and lock in this location in case of competition. After, investor should wait until capital cost limit and localization requirement can be met, after that decision to invest can be made without any risk to project profitability. With respect to technology kind, investment into solar PV power plant is more attractive than into wind or small hydro power, since it has higher weighted net present value and lower standard deviation. However, it does not change decision-making strategy that remains the same for each technology type. Fuzzy pay-method proved its ability to disclose the same patterns of information as Monte Carlo simulation. Being effective in investment analysis under uncertainty and easy in use, it can be recommended as sufficient analytical tool to investors and researchers. Apart from described results, this thesis contributes to the academic literature by detailed description of capacity price calculation for renewable energy that was not available in English before. With respect to methodology novelty, such advanced approaches as Datar-Mathews method and fuzzy pay-off method are applied on the top of investment profitability model that incorporates capacity remuneration calculation as well. Comparison of effects of two different RE supporting schemes, namely Russian capacity mechanism and feed-in premium, contributes to policy comparative studies and exhibits useful inferences for researchers and policymakers. Limitations of this research are simplification of assumptions to country-average level that restricts our ability to analyze renewable energy investment region wise and existing limitation of the studying policy to the wholesale power market that leaves retail markets and remote areas without our attention, taking away medium and small investment into renewable energy from the research focus. Elimination of these limitations would allow creating the full picture of Russian renewable energy investment profile.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis examines the suitability of VaR in foreign exchange rate risk management from the perspective of a European investor. The suitability of four different VaR models is evaluated in respect to have insight if VaR is a valuable tool in managing foreign exchange rate risk. The models evaluated are historical method, historical bootstrap method, variance-covariance method and Monte Carlo simulation. The data evaluated are divided into emerging and developed market currencies to have more intriguing analysis. The foreign exchange rate data in this thesis is from 31st January 2000 to 30th April 2014. The results show that the previously mentioned VaR models performance in foreign exchange risk management is not to be considered as a single tool in foreign exchange rate risk management. The variance-covariance method and Monte Carlo simulation performs poorest in both currency portfolios. Both historical methods performed better but should also be considered as an additional tool along with other more sophisticated analysis tools. A comparative study of VaR estimates and forward prices is also included in the thesis. The study reveals that regardless of the expensive hedging cost of emerging market currencies the risk captured by VaR is more expensive and thus FX forward hedging is recommended

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.