50 resultados para Mathematical Investigation
Resumo:
In this diploma work advantages of coherent anti-Stokes Raman scattering spectrometry (CARS) and various methods of the quantitative analysis of substance structure with its help are considered. The basic methods and concepts of the adaptive analysis are adduced. On the basis of these methods the algorithm of automatic measurement of a scattering strip size of a target component in CARS spectrum is developed. The algorithm uses known full spectrum of target substance and compares it with a CARS spectrum. The form of a differential spectrum is used as a feedback to control the accuracy of matching. To exclude the influence of a background in CARS spectra the differential spectrum is analysed by means of its second derivative. The algorithm is checked up on the simulated simple spectra and on the spectra of organic compounds received experimentally.
Resumo:
A hybrid electric vehicle is a fast-growing concept in the field of vehicle industry. Nowadays two global problems make manufactures to develop such systems. These problems are: the growing cost of a fuel and environmental pollution. Also development of controlled electric drive with high control accuracy and reliability allows improving of vehicle drive characteristics. The objective of this Diploma Thesis is to investigate the possibilities of electrical drive application for new principle of parallel hybrid vehicle system. Electric motor calculations, selection of most suitable control system and other calculations are needed. This work is not final work for such topic. Further investigation with more precise calculations, modeling, measurements and cost calculations are needed to answer the question if such system is efficient.
Resumo:
The present work is a part of the large project with purpose to qualify the Flash memory for automotive application using a standardized test and measurement flow. High memory reliability and data retention are the most critical parameters in this application. The current work covers the functional tests and data retention test. The purpose of the data retention test is to obtain the data retention parameters of the designed memory, i.e. the maximum time of information storage at specified conditions without critical charge leakage. For this purpose the charge leakage from the cells, which results in decrease of cells threshold voltage, was measured after a long-time hightemperature treatment at several temperatures. The amount of lost charge for each temperature was used to calculate the Arrhenius constant and activation energy for the discharge process. With this data, the discharge of the cells at different temperatures during long time can be predicted and the probability of data loss after years can be calculated. The memory chips, investigated in this work, were 0.035 μm CMOS Flash memory testchips, designed for further use in the Systems-on-Chips for automotive electronics.
Resumo:
Electrolyte solutions are of importance in a wide range of scientific contexts and as such have attracted considerable theoretical and experimental effort over many years. Nuclear Magnetic resonance provides a precise and versatile tool for investigation of electrolyte solutions, both in water and in organic solvents. Many structural and dynamic properties can be obtained through NMR experiments. The solution of aluminum chloride in water was studied. Different concentrations were taken for investigation. Independence of maximum line shift from concentration and acidity was shown. Six-coordinated structure of solvation shell was confirmed by experiments on 'H and 27A1 nuclei. Diffusion coefficients were studied. The solution of nickel chloride in methanol was studied. Lines, corresponding to coordinated and bulk methanol were found. Four-, five- and six-coordinated structures were found in different temperatures. The line for coordinated -OD group of deuterated methanol was observed on 2H spectrum for the first time. Partial deuteration of CH3 group was detected. Inability to observe coordinated -OH group was explained.
Resumo:
In this work AC magnetometer was developed and primary test measurements were performed for temperature range from 77 K up to 350 K in frequency range from 1 kHz up to 20 kHz. In the course of the present work dependencies of magnetization on temperature for Lao7Sr03Mni _yFeyO3 with y = 0.15, 0.20, 0.25 were obtained in DC magnetic field using SQUID magnetometer and in AC magnetic field using the developed AC magnetometer. Lai.XSrXMnO3 (LSMO) compounds belong to the class of Mn perovskites, which demonstrate very high degree of spin polarization. These materials are of great importance for nowadays applications in spintronics, where spin polarized electron transport is used. Spin glass like behavior was found as a characteristic feature of these solid solutions with the freezing temperature in the range 65 — 210 K.
Resumo:
The present thesis in focused on the minimization of experimental efforts for the prediction of pollutant propagation in rivers by mathematical modelling and knowledge re-use. Mathematical modelling is based on the well known advection-dispersion equation, while the knowledge re-use approach employs the methods of case based reasoning, graphical analysis and text mining. The thesis contribution to the pollutant transport research field consists of: (1) analytical and numerical models for pollutant transport prediction; (2) two novel techniques which enable the use of variable parameters along rivers in analytical models; (3) models for the estimation of pollutant transport characteristic parameters (velocity, dispersion coefficient and nutrient transformation rates) as functions of water flow, channel characteristics and/or seasonality; (4) the graphical analysis method to be used for the identification of pollution sources along rivers; (5) a case based reasoning tool for the identification of crucial information related to the pollutant transport modelling; (6) and the application of a software tool for the reuse of information during pollutants transport modelling research. These support tools are applicable in the water quality research field and in practice as well, as they can be involved in multiple activities. The models are capable of predicting pollutant propagation along rivers in case of both ordinary pollution and accidents. They can also be applied for other similar rivers in modelling of pollutant transport in rivers with low availability of experimental data concerning concentration. This is because models for parameter estimation developed in the present thesis enable the calculation of transport characteristic parameters as functions of river hydraulic parameters and/or seasonality. The similarity between rivers is assessed using case based reasoning tools, and additional necessary information can be identified by using the software for the information reuse. Such systems represent support for users and open up possibilities for new modelling methods, monitoring facilities and for better river water quality management tools. They are useful also for the estimation of environmental impact of possible technological changes and can be applied in the pre-design stage or/and in the practical use of processes as well.
Resumo:
The environmental impact of landfill is a growing concern in waste management practices. Thus, assessing the effectiveness of the solutions implemented to alter the issue is of importance. The objectives of the study were to provide an insight of landfill advantages, and to consolidate landfill gas importance among others alternative fuels. Finally, a case study examining the performances of energy production from a land disposal at Ylivieska was carried out to ascertain the viability of waste to energy project. Both qualitative and quantitative methods were applied. The study was conducted in two parts; the first was the review of literatures focused on landfill gas developments. Specific considerations were the conception of mechanism governing the variability of gas production and the investigation of mathematical models often used in landfill gas modeling. Furthermore, the analysis of two main distributed generation technologies used to generate energy from landfill was carried out. The review of literature revealed a high influence of waste segregation and high level of moisture content for waste stabilization process. It was found that the enhancement in accuracy for forecasting gas rate generation can be done with both mathematical modeling and field test measurements. The result of the case study mainly indicated the close dependence of the power output with the landfill gas quality and the fuel inlet pressure.
Resumo:
Diplomityö tehtiin Wello Oy:n toimeksiannosta. Wello Oy on vesi- ja tuulivoimaratkaisuihin keskittynyt yritys, joka kehittää aaltovoimalaitekonseptia. Työssä selvitettiin aaltovoimaan liittyviä ilmiöitä ja aaltovoimalaitteen mekaanista konseptia ja tehtiin arvio niiden tehokkuudesta. Työssä käytettiin kaupallisia simulointityökaluja kuten monikappaledynamiikan simulointiohjelmaa MSC.ADAMS R3:a ja yleistä matematiikka ohjelmaa Matlab Simulink:ia. Simulointimallia käytettiin arvioimaan laitteen yleistä käyttäytymistä. Lisäksi laitteen analyyttisiä malleja käytettiin laitteen toimintaperiaatteen selvitykseen. Simulointia käytettiin kelluvan laitteen mekanismin tutkimukseen. Tuloksiin pohjautuen laitteelle määriteltiin teoreettiset maksimiteho rajat ja rajoitteet, jotka vaikuttavat laitteen tehokkuuteen.
Resumo:
In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.
Resumo:
Transitional flow past a three-dimensional circular cylinder is a widely studied phenomenon since this problem is of interest with respect to many technical applications. In the present work, the numerical simulation of flow past a circular cylinder, performed by using a commercial CFD code (ANSYS Fluent 12.1) with large eddy simulation (LES) and RANS (κ - ε and Shear-Stress Transport (SST) κ - ω! model) approaches. The turbulent flow for ReD = 1000 & 3900 is simulated to investigate the force coefficient, Strouhal number, flow separation angle, pressure distribution on cylinder and the complex three dimensional vortex shedding of the cylinder wake region. The numerical results extracted from these simulations have good agreement with the experimental data (Zdravkovich, 1997). Moreover, grid refinement and time-step influence have been examined. Numerical calculations of turbulent cross-flow in a staggered tube bundle continues to attract interest due to its importance in the engineering application as well as the fact that this complex flow represents a challenging problem for CFD. In the present work a time dependent simulation using κ – ε, κ - ω! and SST models are performed in two dimensional for a subcritical flow through a staggered tube bundle. The predicted turbulence statistics (mean and r.m.s velocities) have good agreement with the experimental data (S. Balabani, 1996). Turbulent quantities such as turbulent kinetic energy and dissipation rate are predicted using RANS models and compared with each other. The sensitivity of grid and time-step size have been analyzed. Model constants sensitivity study have been carried out by adopting κ – ε model. It has been observed that model constants are very sensitive to turbulence statistics and turbulent quantities.
Resumo:
The oxygen cutting is a thermal cutting process, in which metal is heated locally up to its ignition temperature and burnt off by oxygen blast. Oxygen cutting can be used to remove upset metal of a hollow bar occurred due to solid-state welding process. The main goal of this research was to establish a connection between oxygen blasts and mass of metal removed and relate findings to production to suggest improvements to the current process. This master´s thesis describes the designing and building of a test rig for oxygen blowing measurements. It also contains all executed tests and test results, which were carried out. There are different cutting parameters which were studied as well as their effect on cutting process. The oxygen cutting process, used in solid-state welding process, can be improved by the test results.
Resumo:
The control of coating layer properties is becoming increasingly important as a result of an emerging demand for novel coated paper-based products and an increasing popularity of new coating application methods. The governing mechanisms of microstructure formation dynamics during consolidation and drying are nevertheless, still poorly understood. Some of the difficulties encountered by experimental methods can be overcome by the utilisation of numerical modelling and simulation-based studies of the consolidation process. The objective of this study was to improve the fundamental understanding of pigment coating consolidation and structure formation mechanisms taking place on the microscopic level. Furthermore, it is aimed to relate the impact of process and suspension properties to the microstructure of the coating layer. A mathematical model based on a modified Stokesian dynamics particle simulation technique was developed and applied in several studies of consolidation-related phenomena. The model includes particle-particle and particle-boundary hydrodynamics, colloidal interactions, Born repulsion, and a steric repulsion model. The Brownian motion and a free surface model were incorporated to enable the specific investigation of consolidation and drying. Filter cake stability was simulated in various particle systems, and subjected to a range of base substrate absorption rates and system temperatures. The stability of the filter cake was primarily affected by the absorption rate and size of particles. Temperature was also shown to have an influence. The consolidation of polydisperse systems, with varying wet coating thicknesses, was studied using imposed pilot trial and model-based drying conditions. The results show that drying methods have a clear influence on the microstructure development, on small particle distributions in the coating layer and also on the mobility of particles during consolidation. It is concluded that colloidal properties can significantly impact coating layer shrinkage as well as the internal solids concentration profile. Visualisations of particle system development in time and comparison of systems at different conditions are useful in illustrating coating layer structure formation mechanisms. The results aid in understanding the underlying mechanisms of pigment coating layer consolidation. Guidance is given regarding the relationship between coating process conditions and internal coating slurry properties and their effects on the microstructure of the coating.
Resumo:
Svavel förekommer i kol och olja och oxideras vid förbränning till svaveldioxid (SO2). Årligen utsläpps stora mängder svaveldioxid som åstadkommer sura regn, minskning av stratosfäriskt ozon och sjukdomar. Av dessa orsaker är det nödvändigt att minska utsläppen av svaveldioxid. Den teknologi som rör planering av reaktorer och processer för rökgasavsvavling (FGD) har utvecklats kraftigt och idag använder man olika typer av lösningar. De vanligaste alternativen för FGD är våtskrubber- och semitorra skrubbersystem (Spray Dry Scrubbers, SDS) och injektionsprocesser för absorbenter. SDS-processer har studerats bland annat av Ahlbeck [4] och Klingspor [5] och injektionsprocesser av Alvfors [6]. Kalksten, som i huvusak består av kalciumkarbonat, används i rökgasavsvavling på grund av sin förmåga att binda svavel i form av sulfatsalter. Den vanligaste rökgasavsvavlingsmetoden är våtskrubbning, där det sedimentära stenmaterialets upplösningshastighet är en av de faktorer som påverkar resultatet mest. Utvärdering av kalkstensreaktivitet är därför speciellt viktig vid planering och drift av anläggningar för rökgasavsvavling. Målsättningen med detta arbete var att modellera upplösningen av olika typers kalksten för att få en kvantitativ utvärdering av kvaliteten på de analyserade proverna. Därtill testades även karbonatbiprodukter från stålindustrin för att utvärdera möjligheter att använda andra råmaterial. Det transienta förloppet har analyserats, varvid upplösningshastigheten modellerades bl.a. i avseende på tid och pH. Under arbetets gång har antalet empiriska korrelationer minskats till fördel för fysikaliska modeller av diffusiva och konvektiva masstransportfenomen. En målsättning var att skapa en effektiv och snabb metod för att testa olika absorbenter för rökgasavsvavling under transienta förlopp. I arbetet användes PSD-analys, gjordes pH-mätningar och andra utvärderingar av de fysikaliska parametrar som ingår i beräkningarna. On-line mätningar för de icke-stationära variablerna tid och pH ger möjlighet att eliminera osäkerheter. Vissa modeller kan vara komplicerade. En modell för upplösningshastigheten med mer detaljerad utvärdering av parametrar och färre approximationer är därför nödvändig då man vill utvärdera reaktionshastigheten för fasta partiklar i sur miljö. Arbetet utfördes under fyra år och fem peer review-artiklar ingår i avhandlingen.
Resumo:
Preference relations, and their modeling, have played a crucial role in both social sciences and applied mathematics. A special category of preference relations is represented by cardinal preference relations, which are nothing other than relations which can also take into account the degree of relation. Preference relations play a pivotal role in most of multi criteria decision making methods and in the operational research. This thesis aims at showing some recent advances in their methodology. Actually, there are a number of open issues in this field and the contributions presented in this thesis can be grouped accordingly. The first issue regards the estimation of a weight vector given a preference relation. A new and efficient algorithm for estimating the priority vector of a reciprocal relation, i.e. a special type of preference relation, is going to be presented. The same section contains the proof that twenty methods already proposed in literature lead to unsatisfactory results as they employ a conflicting constraint in their optimization model. The second area of interest concerns consistency evaluation and it is possibly the kernel of the thesis. This thesis contains the proofs that some indices are equivalent and that therefore, some seemingly different formulae, end up leading to the very same result. Moreover, some numerical simulations are presented. The section ends with some consideration of a new method for fairly evaluating consistency. The third matter regards incomplete relations and how to estimate missing comparisons. This section reports a numerical study of the methods already proposed in literature and analyzes their behavior in different situations. The fourth, and last, topic, proposes a way to deal with group decision making by means of connecting preference relations with social network analysis.
Resumo:
The update of the Finnish legislation concerning waste was unavoidable, to comply with the European Union (EU) requirements defined in the EU-Directive on Waste. The new waste law updates were enacted into the Finnish legislation on the 11.03.2011 and targeted for applicability by the 11.03.2012. This thesis investigates the implications of the new amendments to the waste legislation from the perspective of green sand foundries. The investigations are conducted by comparing two of Componenta’s green sand foundries and evaluating their waste streams. Additionally, the impacts of legislation amendments are critiqued on their environmental and economic aspects. The study’s comparison of waste fractions at the two foundries reveals that sand is dominant in absolute tonnage and costs. The increments of waste taxes forces foundries to focus on waste management, recycling and disposing. The new legislation’s promotion of material efficiency, also guides foundries towards the prevention of waste. A potential preventive measure is to regenerate waste sand resulting to cost savings on both raw-materials and waste management. However, the lack of absolute targets for waste prevention or recycling rates discourages the interests towards creating or adopting new technologies and methods for the waste handling.