26 resultados para MEMBRANE-VESICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoclasts are multinucleated bone-degrading cells that undergo large changes in their polarisation and vesicular trafficking during the bone resorption cycle. Rab proteins are small GTPases that offer both temporal and spatial regulation to the transport between membranous organelles. Previously the presence and function of only few of the currently known 60 Rab proteins in osteoclasts have been reported. In this study, the expression of 26 Rab genes in bone-resorbing osteoclasts was demonstrated with gene-specific primer pairs. The further analysis of three Rab genes during human osteoclast differentiation revealed that Rab13 gene is highly induced during osteoclastogenesis. The presence of Rab13 protein in the secretory vesicles directed towards the ruffled border and in the endocytotic or transcytotic pathways in resorbing osteoclasts was excluded. The localisation of Rab13 suggests that that it is associated with a previously unknown vesicle population travelling between the trans-Golgi network and the basolateral membrane in bone resorbing osteoclasts. Rab proteins convey their functions by binding to specific effector proteins. We found a novel Rab13 interaction with endospanins-1 and -2 that are yet poorly characterised small transmembrane proteins. The Rab13 subfamily member Rab8 also bound to endospanins, while Rab10 and unrelated Rabs did not. Rab13 and endospanin-2 co-localised in perinuclear vesicles in transfected cells, demonstrating the interaction also in vivo. The inhibition of Rab13 did not interfere with the localisation of endospanin-2 nor did it affect the cell surface expression of growth hormone receptor, as has been previously described for endospanins. The physiological role of this novel protein-protein interaction thus remains to be clarified. The analysis of the transcytotic route in bone resorbing osteoclasts revealed that multiple vesicle populations arise from the ruffled border and transport the bone degradation products for exocytosis. These vesicles are directed to the functional secretory domain that is encircled by an actin-based molecular barrier. Furthermore, the transcytotic vesicles contain abundant Helix pomatia lectin binding sites and represent lipid raft concentrates. Finally, autophagosomal compartments may also be involved in the transcytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to study the surface modification of reverse osmosis membranes by surfactants and the effect of modification on rejection and flux. The surfactants included anionic and nonionic surfactants. The purpose of membrane modification was to improve pure water permeability with increasing salt rejection. The literature part of the study deals with the basic principles of reverse osmosis technology and factors affecting the membrane performance. Also the membrane surface modification by surfactants and their influence on membrane’s surface properties and efficiency (permeability and salt rejection) were discussed. In the experimental part of the thesis two thin-film composite membranes, Desal AG and LE-4040, were modified on-line with three different surfactants. The effects of process parameters (pressure, pH, and surfactant concentration) on surface modification were also examined. The characteristics of the modified membranes were determined by measuring the membranes’ contact angle and zeta potentials. The zeta potential and contact angle measurements indicate that the surfactants were adsorbed onto the both membranes. However, the adsorption did not effect on membrane’s pure water permeability and salt rejection. Thereby, the surface modification of the Desal AG and LE-4040 membranes by surfactants was not able to improve the membrane’s performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this Master’s thesis study was to develop a membrane for oil contaminated water treatments. Oily wastewaters are a big problem to environment and therefore it is important to find an efficient method for their treatment. There are several treatment methods, but one of the most promising methods is membrane filtration. In the theoretical part of this study the membrane technology and polymeric membrane preparation with phase inversion and membrane modification methods was discussed. It was also told about the most important properties of the membranes. Oily waters, their treatment methods and oily wastewater sources were discussed more specifically. In the experimental part membranes from cellulose acetate were prepared and membranes were modified with two different methods. Modification methods were surface modification and polymer mixing. The modification purpose was to make membranes more hydrophilic and increase surface charge, which can reduce fouling. Membranes were characterized by determining zeta potential, contact angle, oil retention, pure water permeability, pressure-normalized flux and fouling. It were used both synthetic and real spent oil-water emulsion in membrane filtration. Surface modification resulted membranes, which had better properties than unmodified membrane. The amount of substance used in surface modification affected a lot to membrane properties, so it would be necessary to try different amounts of substance to develop the best membrane for oil-water emulsion treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional activated sludge processes (CAS) for the treatment of municipal wastewater are going to be outdated gradually due to more stringent environmental protection laws and regulations. The Membrane bioreactors (MBRs) are the most promising modern technology widely accepted in the world of wastewater treatment due to their highly pronounced features such as high quality effluent, less foot print and working under high MLSS concentration. This research project was carried out to investigate the feasibility and effectiveness of MBR technology compare to the CAS process based on the scientific facts and results. The pilot scale MBR pilot plant was run for more than 150 days and the analysis results were evaluated. The prime focus of the project was to evaluate the correlation of permeate flux under different operating MLSS concentrations. The permeate flux was found almost constant regardless of variations in MLSS concentrations. The removal of micropollutant such as heavy metals, PCPPs, PFCs, steroidal hormones was also studied. The micropollutant removal performance of MBR process was found relatively effective than CAS process. Furthermore, the compatibility of submerged membranes within the bioreactor had truly reduced the process footprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avhandlingen handlar om pappers- och membranbaserad jonmodulerad elektronik. Målet med forskningen har varit att utveckla billig, miljövänlig och brännbar elektronik, som kan användas i vardagliga engångsprodukter. Baskomponenterna som utvecklas och presenteras i avhandlingen är transistorer och kondensatorer. Mer komplicerad logisk kretselektronik demonstreras också med hjälp av dessa komponenter. Substraten som utnyttjas vid framställningen av dessa elektroniska komponenter är papper och membran. Dessa substrat är flexibla, hållbara, billiga, miljövänliga, etc. och därför väl anpassade för befintliga tryckteknologier. Själva baskomponenterna framställs sedan på dessa substrat genom att trycka flera skikt på varandra, där varje enskilt skikt är ett individuellt material. Detta är möjligt eftersom de organiska materialen som används i dessa komponenter är upplösta i ett lösningsmedel och kan därmed tryckas på samma sätt som ett vanligt bläck. Ett tredimensionellt objekt kan på detta sätt framställas. I avhandlingen presenteras flera olika typer av transistorer, men den gemensamma nämnaren bland dessa är att isolatorn är en jonledare. Denna, ganska ovanliga, transistormodellen har den stora fördelen att lågspänningskomponenter kan relativt enkelt framställas. Det som är speciellt med våra transistorer är att vi har använt miljövänliga jonledare. Detta, bl.a., leder till att våra komponenter visar både god prestanda, tillika som de är miljövänliga. I avhandlingen demonstrerar vi även tryckta superkondensatorer, en motsvarighet till laddningsbara batterier, konstruerade på papper med aktiverat kol och miljövänliga jonledare. De mest komplicerade logiska kretsar som demonstreras i denna avhandling är ring-oscillatorer och 1-bits-minnen konstruerade på papper. --------------------------------------------- Väitöskirja käsittelee paperille ja polymeerikalvolle tulostettua ionimoduloitua elektroniikkaa. Tutkimuksen tavoitteena oli kehittää edullista, ympäristöystävällistä ja polttokelpoista elektroniikkaa, jota voidaan käyttää esim. tavanomaisissa kertakäyttötuotteissa. Väitöskirjassa esitellään erilaisia transistoreita ja kondensaattoreita. Näitä elektronisia peruskomponentteja käyttäen demonstroidaan myös monimutkaisempia loogisia piirejä. Komponenttien valmistuksessa alustana käytettiin paperia ja polymeerikalvoa. Valitut alustat ovat joustavia ja kestäviä, ja ovat siksi hyvin yhteensopivia olemassa olevien tulostusmenetelmien kanssa. Peruskomponentit valmistettiin tulostamalla eri materiaaleja päällekkäin. Komponenteissa käytettävät orgaaniset aineet ovat liuenneessa muodossa musteessa, joka voidaan tulostaa samalla periaatteella kuin mikä tahansa normaali muste. Tällä menetelmällä voidaan valmistaa myös kolmiulotteisia tuotteita. Väitöskirjassa esitellään useita erityyppisiä transistoreita, joissa yhdistävänä tekijänä on ionisesti johtava eriste. Tällaista suhteellisen harvinaista transistorityyppiä käyttämällä voidaan mahdollistaa matala-jännitteisten komponenttien yksinkertainen valmistus. Valmistettujen transistoreiden etu on ionisten nesteiden ympäristöystävällisyys. Elektroniset komponentit ovat täten hyviä suorituskyvyltään, mutteivät haitallisia ympäristölle. Väitöskirjassa demonstroidaan myös tulostettujen superkondensaattoreiden, eli ladattavien paristojen vastineiden, valmistus paperille aktiivihiiltä ja ionisia nesteitä käyttäen. Kaikkein monimutkaisimmat loogiset piirit, jotka tässä väitöskirjassa esitellään, ovat rengasoskillaattorit sekä 1-bittinen paperille valmistettu muisti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The aim of this work was to assess the ultrastructural changes, cellular proliferation, and the biofilm formation ability of F. nucleatum as defense mechanisms against the effect of HNP-1. Materials and methods: The type strain of F. nucleatum (ssp. nucleatum ATCC 25586) and two clinical strains (ssp. polymorphum AHN 9910 and ssp. nucleatum AHN 9508) were cultured and incubated with four different test concentrations of recombinant HNP-1 (1, 5, 10 and 20 µg/ml) and one control group (0 µg/ml). Bacterial pellets from each concentration were processed for TEM imaging. Planktonic growth was assessed and colony forming units (CFU) were measured to determine the cellular proliferation. Scrambled HNP-1 was used for confirmation. Results: TEM analyses revealed a decrease in the outer membrane surface corrugations and roughness of the strain AHN 9508 with increasing HNP-1 concentrations. In higher concentrations of HNP-1, the strain AHN 9910 showed thicker outer membranes with a number of associated rough vesicles attached to the outer surface. For ATCC 25586, the treated bacterial cells contained higher numbers of intracellular granules with increasing the peptide concentration. Planktonic growth of the two clinical strains were significantly enhanced (P<0.001) with gradually increased concentrations of HNP-1. None of the planktonic growth results of the 3 strains incubated with the scrambled HNP-1 was statistically significant. HNP-1 decreased the biofilm formation of the two clinical strains, AHN 9910 and 9508, significantly (P<0.01 and P<0.001; respectively). Conclusions: The present in vitro study demonstrates that F. nucleatum has the ability to withstand the lethal effects of HNP-1 even at concentrations simulating the diseased periodontium in vivo. The increase in planktonic growth could act as defense mechanisms of F. nucleatum against HNP-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spermatogenesis is a unique process compared to cell differentiation in somatic tissues. Germ cells undergo a considerable number of metabolic and morphological changes during their differentiation: they initially proliferate by mitosis to increase in number; at some point they scramble their genetic material by meiosis, to create new genetic combinations that are the basis for evolution through natural selection and, finally, they change their shape and produce specialized structures characteristic of the mature sperm. Germ cells display an astonishingly broad transcription of their genome compared to differentiated somatic cells. Moreover, the different RNAs need to be specifically regulated in space and time for sperm production to occur appropriately. Different proteins localized in specific subcellular compartments, along with regulatory small RNAs, have an essential role in the proper execution of the different steps of spermatogenesis. These ribonucleoprotein granules interact with cytoplasmic vesicles and organelles to accomplish their role during sperm development. In this study, we characterized the most prominent ribonucleoprotein granule found in germ cells, the Chromatoid body (CB). For the first time we investigated the interaction of the CB with the cytoplasmic vesicles that surround it. These studies directed us to the description of Retromer proteins in germ cells and their involvement with the CB and the acrosome formation. Moreover, we discovered the interplay between the CB and the lysosome system in haploid round spermatids, and identified FYCO1, a new protein central to this interaction. Our results suggest that the vesicular transport system participates in the CB-mediated RNA regulation during sperm development.