25 resultados para MACROBENTHIC COMMUNITIES
Resumo:
The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.
Resumo:
End-user development is a very common but often largely overlooked phenomenon in information systems research and practice. End-user development means that regular people, the end-users of software, and not professional developers are doing software development. A large number of people are directly or indirectly impacted by the results of these non-professional development activities. The numbers of users performing end-user development activities are difficult to ascertain precisely. But it is very large, and still growing. Computer adoption is growing towards 100% and many new types of computational devices are continually introduced. In addition, other devices not previously programmable are becoming so. This means that, at this very moment, hundreds of millions of people are likely struggling with development problems. Furthermore, software itself is continually being adapted for more flexibility, enabling users to change the behaviour of their software themselves. New software and services are helping to transform users from consumers to producers. Much of this is now found on-line. The problem for the end-user developer is that little of this development is supported by anyone. Often organisations do not notice end-user development and consequently neither provide support for it, nor are equipped to be able to do so. Many end-user developers do not belong to any organisation at all. Also, the end-user development process may be aggravating the problem. End-users are usually not really committed to the development process, which tends to be more iterative and ad hoc. This means support becomes a distant third behind getting the job done and figuring out the development issues to get the job done. Sometimes the software itself may exacerbate the issue by simplifying the development process, deemphasising the difficulty of the task being undertaken. On-line support could be the lifeline the end-user developer needs. Going online one can find all the knowledge one could ever need. However, that does still not help the end-user apply this information or knowledge in practice. A virtual community, through its ability to adopt the end-user’s specific context, could surmount this final obstacle. This thesis explores the concept of end-user development and how it could be supported through on-line sources, in particular virtual communities, which it is argued here, seem to fit the end-user developer’s needs very well. The experiences of real end-user developers and prior literature were used in this process. Emphasis has been on those end-user developers, e.g. small business owners, who may have literally nowhere to turn to for support. Adopting the viewpoint of the end-user developer, the thesis examines the question of how an end-user could use a virtual community effectively, improving the results of the support process. Assuming the common situation where the demand for support outstrips the supply.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This study examines the aftermath of mass violence in local communities. Two rampage school shootings that occurred in Finland are analyzed and compared to examine the ways in which communities experience, make sense of, and recover from sudden acts of mass violence. The studied cases took place at Jokela High School, in southern Finland, and at a polytechnic university in Kauhajoki, in western Finland, in 2007 and 2008 respectively. Including the perpetrators, 20 people lost their lives in these shootings. These incidents are part of the global school shooting phenomenon with increasing numbers of incidents occurring in the last two decades, mostly in North America and Europe. The dynamic of solidarity and conflict is one of the main themes of this study. It builds upon previous research on mass violence and disasters which suggests that solidarity increases after a crisis, and that this increase is often followed by conflict in the affected communities. This dissertation also draws from theoretical discussions on remembering, narrating, and commemorating traumatic incidents, as well as the idea of a cultural trauma process in which the origins and consequences of traumas are negotiated alongside collective identities. Memorialization practices and narratives about what happened are vital parts of the social memory of crises and disasters, and their inclusive and exclusive characteristics are discussed in this study. The data include two types of qualitative interviews; focused interviews with 11 crisis workers, and focused, narrative interviews with 21 residents of Jokela and 22 residents of Kauhajoki. A quantitative mail survey of the Jokela population (N=330) provided data used in one of the research articles. The results indicate that both communities experienced a process of simultaneous solidarity and conflict after the shootings. In Jokela, the community was constructed as a victim, and public expressions of solidarity and memorialization were promoted as part of the recovery process. In Kauhajoki, the community was portrayed as an incidental site of mass violence, and public expressions of solidarity by distant witnesses were labeled as unnecessary and often criticized. However, after the shooting, the community was somewhat united in its desire to avoid victimization and a prolonged liminal period. This can be understood as a more modest and invisible process of “silent solidarity”. The processes of enforced solidarity were partly made possible by exclusion. In some accounts, the family of the perpetrator in Jokela was excluded from the community. In Kauhajoki, the whole incident was externalized. In both communities, this exclusion included associating the shooting events, certain places, and certain individuals with the concept of evil, which helped to understand and explain the inconceivable incidents. Differences concerning appropriate emotional orientations, memorialization practices and the pace of the recovery created conflict in both communities. In Jokela, attitudes towards the perpetrator and his family were also a source of friction. Traditional gender roles regarding the expression of emotions remained fairly stable after the school shootings, but in an exceptional situation, conflicting interpretations arose concerning how men and women should express emotion. The results from the Jokela community also suggest that while increased solidarity was seen as important part of the recovery process, some negative effects such as collective guilt, group divisions, and stigmatization also emerged. Based on the results, two simultaneous strategies that took place after mass violence were identified; one was a process of fast-paced normalization, and the other was that of memorialization. Both strategies are ways to restore the feeling of security shattered by violent incidents. The Jokela community emphasized remembering while the Kauhajoki community turned more to the normalization strategy. Both strategies have positive and negative consequences. It is important to note that the tendency to memorialize is not the only way of expressing solidarity, as fast normalization includes its own kind of solidarity and helps prevent the negative consequences of intense solidarity.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.