37 resultados para Light pulse generators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compares different electric propulsion systems. Results of the analysis of all the advantages and disadvantages of the different propulsion systems are given. This thesis estimates possibilities to apply different diesel-electric propulsion concepts for different vessel types. Small and medium size vessel’s power ranges are studied. The optimal delivery system is chosen. This choice is made on the base of detailed study of the concepts, electrical equipment market and comparison of mass, volume and efficiency parameters. In this thesis three marine generators are designed. They are: salient pole synchronous generator and two permanent magnet synchronous generators. Their electrical, dimensional, cost and efficiency parameters are compared. To understand all the benefits diagrams with these parameters are prepared. Possible benefits and money savings are estimated. As the result the advantages, disadvantages and boundary conditions for the permanent magnet synchronous generator application in marine electric-power systems are found out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mikkelin talousvedestä kahden kolmasosan tullessa Pursialan pohjavesialueelta on alueen suojeleminen tärkeää. Pohjaveden laatua uhkaavat etenkin alueella sattuneet pohjavedenpilaantumistapaukset. Merkittävimmät pohjaveden pilaantumistapaukset ovat VAPO Oy:n sahan aiheuttama pohjaveden pilaantuminen kloorifenoleilla (CP) ja VR:n ratapölkkykyllästämön aiheuttama pohjaveden pilaantuminen kreosoottiöljyllä sekä Rinnekadun Nesteen aiheuttama pohjaveden pilaantuminen MTBE:llä. Alueella on tehty tutkimuksia ja kunnostuksia pilaantumiin liittyen, mutta näiden tuloksia ei ole aikaisemmin koottu yhteen. Tämän työn tavoitteena oli koota tulokset samaan aineistoon. Työssä keskityttiin kloorifenolien leviämisen tarkasteluun sen Pursialan pohjavedenottamolle muodostaman suurimman uhan vuoksi. Kallioperätietojen, maanpintatietojen ja näytetietojen pohjalta laadittiin myös pienoismalli CP-pilaantuman leviämisen kokonaiskuvan hahmottamiseksi. Työn tavoitteena oli lisäksi tehdä riskitarkastelua CP-pilaantumaan liittyen ja etsiä keinoja hallita havaittuja riskejä. Riskinhallintaan liittyen työssä tutkittiin kloorifenoleilla pilaantuneen alueen maaperä- ja kalliotietoja sekä pohjaveden laatutietoja. Pursialan pohjavedessä on runsaasti rautaa ja mangaania sekä aggressiivista hiilihappoa. Pohjaveden pH on alueella noin 6,5, lämpötila noin 7,5 ºC ja happipitoisuus noin 0,7 mg/l. Pursialan kaupunginalueen kallioperässä on havaittavissa VAPO Oy:n sahalta vedenottamolle etenevä kalliopainanne, jota pitkin CP etenee. Alueen kallioperä on kiillegneissiä, jossa on pohjois–etelä-suuntaista rakoilua. Maaperätuloksien perusteella on havaittavissa vettä hyvin johtavien maakerrosten jatkuminen koko vedenottamon ja sahan välisen matkan, mikä tarkoittaa, että CP-pitoisella pohjavedellä voi olla aiemmin oletettua nopeampikin yhteys sahalta vedenottamolle. Suurin CP-pitoisuus noin 100 000 µg/l on mitattu KY-5-altaan kohdalle asennetun M14-pohjavesiputken pohjasta. Talousvesiasetuksen raja-arvo CP:lle on 10 µg/l. Sahan ja vedenottamon puolivälissä on havaittu yli 10 000 µg/l meneviä CP-pitoisuuksia. Suurin vedenottamon kaivoista (kaivo 10) mitattu pitoisuus on 149 µg/l. Jakotukilta raakavedestä otetuissa näytteissä tai talousvedessä ei ole kuitenkaan havaittu talousvesiasetuksen ylittäviä CP-pitoisuuksia. Pienoismallin perusteella CP sijaitsee sahan alueella lähellä kallionpintaa ja hajaantuu koko pohjavesipatjaan vedenottamolle päin mentäessä. CP-mittaustuloksissa on havaittavissa pulssimaisuutta. Tämä johtuu todennäköisesti Saimaan pinnan vaihtelun seurauksena muuttuvasta rantaimeytyneen pohjaveden määrästä. Saimaan pinnan nousu näyttäisi tuloksien perusteella nostavan CP-pitoisuuksia saha-alueella ja laskevan lähellä vedenottamoa. Pohjaveden pintatietojen perusteella tehdyn tarkastelun mukaan pohjavesi voi kulkeutua sahalta vedenottamolle parhaimmillaan noin vuodessa. Työssä arvioitiin KY-5–liuoksen vuosittaiseksi käyttömääräksi noin 648–970 m3. Allassakkaa arvioitiin syntyneen yhteensä noin 10–31 m3. Pohjaveteen arvioitiin joutuneen toiminnan aikana yhteensä noin 3 000–4 000 kg CP:tä. Kloorifenolit esiintyvät pohjavedessä lähes täysin kloorifenolaatteina. Kloorifenolien hajoaminen ja muuntuminen pohjavedessä on epätodennäköistä. Käsitteellisen mallin mukaan kloorifenolipilaantuman suurimmat riskit aiheutuvat kloorifenolien mahdollisuudesta pilata Pursialan vedenottamon talousvesi. Tällä hetkellä riskejä hallitaan kloorifenolien leviämisen tarkkailulla, sahan ja vedenottamon puolivälissä sijaitsevalla koepumppauksella sekä varautumalla aktiivihiilijauheen syöttöön talousvesiprosessiin. Koepumppauksen avulla on saatu ylös tällä hetkellä noin 69 kg kloorifenoleita. Tutkimuksen perusteella suositeltavimmat riskinhallintatoimet tulevaisuudessa ovat sahalla sijaitseva kunnostuspumppaus, sahan ja vedenottamon väliin sijoittuva suojapumppaus- ja vesiverhoyhdistelmä sekä sahan rannan kautta tapahtuvan rantaimeytymisen estäminen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is done as a part of project called FuncMama that is a project between Technical Research Centre of Finland (VTT), Oulu University (OY), Lappeenranta University of Technology (LUT) and Finnish industrial partners. Main goal of the project is to manufacture electric and mechanical components from mixed materials using laser sintering. Aim of this study was to create laser sintered pieces from ceramic material and monitor the sintering event by using spectrometer. Spectrometer is a device which is capable to record intensity of different wavelengths in relation with time. In this study the monitoring of laser sintering was captured with the equipment which consists of Ocean Optics spectrometer, optical fiber and optical lens (detector head). Light from the sintering process hit first to the lens system which guides the light in to the optical fibre. Optical fibre transmits the light from the sintering process to the spectrometer where wavelengths intensity level information is detected. The optical lens of the spectrometer was rigidly set and did not move along with the laser beam. Data which was collected with spectrometer from the laser sintering process was converted with Excel spreadsheet program for result’s evaluation. Laser equipment used was IPG Photonics pulse fibre laser. Laser parameters were kept mainly constant during experimental part and only sintering speed was changed. That way it was possible to find differences in the monitoring results without fear of too many parameters mixing together and affecting to the conclusions. Parts which were sintered had one layer and size of 5 x 5 mm. Material was CT2000 – tape manufactured by Heraeus which was later on post processed to powder. Monitoring of different sintering speeds was tested by using CT2000 reference powder. Moreover tests how different materials effect to the process monitoring were done by adding foreign powder Du Pont 951 which had suffered in re-grinding and which was more reactive than CT2000. By adding foreign material it simulates situation where two materials are accidently mixed together and it was studied if that can be seen with the spectrometer. It was concluded in this study that with the spectrometer it is possible to detect changes between different laser sintering speeds. When the sintering speed is lowered the intensity level of light is higher from the process. This is a result of higher temperature at the sintering spot and that can be noticed with the spectrometer. That indicates it could be possible to use spectrometer as a tool for process observation and support the idea of having system that can help setting up the process parameter window. Also important conclusion was how well the adding of foreign material could be seen with the spectrometer. When second material was added a significant intensity level raise could be noticed in that part where foreign material was mixed. That indicates it is possible to see if there are any variations in the material or if there are more materials mixed together. Spectrometric monitoring of laser sintering could be useful tool for process window observation and temperature controlling of the sintering process. For example if the process window for specific material is experimentally determined to get wanted properties and satisfying sintering speed. It is possible if the data is constantly recorded that the results can show faults in the part texture between layers. Changes between the monitoring data and the experimentally determined values can then indicate changes in the material being generated by material faults or by wrong process parameters. The results of this study show that spectrometer could be one possible tool for monitoring. But to get in that point where this all can be made possible much more researching is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Permanent magnet generators (PMG) represent the cutting edge technology in modern wind mills. The efficiency remains high (over 90%) at partial loads. To improve the machine efficiency even further, every aspect of machine losses has to be analyzed. Additional losses are often given as a certain percentage without providing any detailed information about the actual calculation process; meanwhile, there are many design-dependent losses that have an effect on the total amount of additional losses and that have to be taken into consideration. Additional losses are most often eddy current losses in different parts of the machine. These losses are usually difficult to calculate in the design process. In this doctoral thesis, some additional losses are identified and modeled. Further, suggestions on how to minimize the losses are given. Iron losses can differ significantly between the measured no-load values and the loss values under load. In addition, with embedded magnet rotors, the quadrature-axis armature reaction adds losses to the stator iron by manipulating the harmonic content of the flux. It was, therefore, re-evaluated that in salient pole machines, to minimize the losses and the loss difference between the no-load and load operation, the flux density has to be kept below 1.5 T in the stator yoke, which is the traditional guideline for machine designers. Eddy current losses may occur in the end-winding area and in the support structure of the machine, that is, in the finger plate and the clamping ring. With construction steel, these losses account for 0.08% of the input power of the machine. These losses can be reduced almost to zero by using nonmagnetic stainless steel. In addition, the machine housing may be subjected to eddy current losses if the flux density exceeds 1.5 T in the stator yoke. Winding losses can rise rapidly when high frequencies and 10–15 mm high conductors are used. In general, minimizing the winding losses is simple. For example, it can be done by dividing the conductor into transposed subconductors. However, this comes with the expense of an increase in the DC resistance. In the doctoral thesis, a new method is presented to minimize the winding losses by applying a litz wire with noninsulated strands. The construction is the same as in a normal litz wire but the insulation between the subconductors has been left out. The idea is that the connection is kept weak to prevent harmful eddy currents from flowing. Moreover, the analytical solution for calculating the AC resistance factor of the litz-wire is supplemented by including an end-winding resistance in the analytical solution. A simple measurement device is developed to measure the AC resistance in the windings. In the case of a litz-wire with originally noninsulated strands, vacuum pressure impregnation (VPI) is used to insulate the subconductors. In one of the two cases studied, the VPI affected the AC resistance factor, but in the other case, it did not have any effect. However, more research is needed to determine the effect of the VPI on litz-wire with noninsulated strands. An empirical model is developed to calculate the AC resistance factor of a single-layer formwound winding. The model includes the end-winding length and the number of strands and turns. The end winding includes the circulating current (eddy currents that are traveling through the whole winding between parallel strands) and the main current. The end-winding length also affects the total AC resistance factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kansalliskirjaston ONKI-projektin ylläpitämä Finto-palvelu käyttää projektissa kehitettävää Skosmos-ohjelmaa (entinen ONKI Light). Skosmos on työkalu kontrolloitujen sanastojen, kuten asiasanastojen ja asiasanastotyyppisesti käytettävien ontologioiden julkaisuun. Työkalu tarjoaa selailu- ja hakukäyttöliittymän sanastoille sekä avoimet rajapinnat koneellista käyttöä varten. Käyttöliittymä on monikielinen sisältäen tällä hetkellä suomen-, ruotsin- sekä englanninkieliset käyttöliittymäversiot.

Skosmoksen edeltäjälle ONKI Lightille on tehty ONKI-projektissa jo aikaisempi käytettävyystesti, jonka raportti on luettavissa Doriassa.

Käytettävyystestien perusteella vaikuttaisi siltä, että ontologian selaamiseen asiasanoituksessa vaikuttaisi ainakin käyttäjän käyttämä järjestelmä, asiasanoitukseen käytettävä aika, asiasanoitustottumukset ja -kokemus sekä sanaston tuttuus. Jos aikaa ei ole juurikaan varattu asiasanoitukselle, ei käsitteitä juurikaan selailla, vaikka muuten tuki ontologioiden hyödyntämiselle olisi olemassa. Myöskään sanastoa ei juurikaan selailla, mikäli aihe ja sanasto ovat tuttuja, jolloin asiasanojen merkitykset ovat etukäteen tiedossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.