21 resultados para Inverse problems (Differential equations)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-of-the-art predictions of atmospheric states rely on large-scale numerical models of chaotic systems. This dissertation studies numerical methods for state and parameter estimation in such systems. The motivation comes from weather and climate models and a methodological perspective is adopted. The dissertation comprises three sections: state estimation, parameter estimation and chemical data assimilation with real atmospheric satellite data. In the state estimation part of this dissertation, a new filtering technique based on a combination of ensemble and variational Kalman filtering approaches, is presented, experimented and discussed. This new filter is developed for large-scale Kalman filtering applications. In the parameter estimation part, three different techniques for parameter estimation in chaotic systems are considered. The methods are studied using the parameterized Lorenz 95 system, which is a benchmark model for data assimilation. In addition, a dilemma related to the uniqueness of weather and climate model closure parameters is discussed. In the data-oriented part of this dissertation, data from the Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite instrument are considered and an alternative algorithm to retrieve atmospheric parameters from the measurements is presented. The validation study presents first global comparisons between two unique satellite-borne datasets of vertical profiles of nitrogen trioxide (NO3), retrieved using GOMOS and Stratospheric Aerosol and Gas Experiment III (SAGE III) satellite instruments. The GOMOS NO3 observations are also considered in a chemical state estimation study in order to retrieve stratospheric temperature profiles. The main result of this dissertation is the consideration of likelihood calculations via Kalman filtering outputs. The concept has previously been used together with stochastic differential equations and in time series analysis. In this work, the concept is applied to chaotic dynamical systems and used together with Markov chain Monte Carlo (MCMC) methods for statistical analysis. In particular, this methodology is advocated for use in numerical weather prediction (NWP) and climate model applications. In addition, the concept is shown to be useful in estimating the filter-specific parameters related, e.g., to model error covariance matrix parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Target of this book is to propose an approach for modelling drivetrain dynamics in order to design further a vibration control system of a hybrid bus. In this thesis two approaches are examined and compared. First model is obtained by theoretical means: drivetrain is represented as a system of rotating masses, which motion is described with differential equations. Second model is obtained using system identification method: mathematical description of the dynamic behavior of a system is formed based on measured input (torque) and output (speed) data. Then two models are compared and an optimal approach is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glykolien esterit ovat haluttuja pintareaktiivisia aineita. Niitä voidaan valmistaa esteröintireaktiolla karboksyylihappojen kanssa katalyytin läsnä ollessa, jolloin toivottu reaktiotuote on yleensä muodostuva monoesteri. Monoesterin saannon lisäämiseksi reaktiossa muodostuvaa vettä voidaan poistaa jatkuvasti reaktiosta. Reaktion tasapainotilan tutkiminen on kuitenkin tärkeää, jotta reaktion kinetiikka tunnettaisiin mahdollisimman hyvin. Tällöin reaktiotuotteita ei poisteta reaktioseoksesta reaktion aikana. Glykolit esteröityvät happojen kanssa kahdessa vaiheessa. Ensimmäisessä vaiheessa muodostuu monoesteriä ja vettä ja toisessa vaiheessa diesteriä ja vettä. Kokeiden perusteella ensimmäinen vaihe on selvästi toista vaihetta nopeampi reaktio. Kirjallisuudessa on esitetty myös kaksi sivureaktiota, transesteröityminen ja disproportionaatio. Reaktion kinetiikka voidaan kuvata ilman näitä pieniä sivureaktiota, mutta täydellisen kuvaamisen vuoksi on ne myös otettava huomioon. Reaktion kinetiikan tutkimiseksi suoritettiin viisi laboratoriokoetta eri lämpötiloissa neopentyyliglykolilla ja propionihapolla homogeenisen para-tolueenisulfonihapon toimiessa katalyyttina. Lähtöaineiden ja tuotteiden konsentraatioita seurattiin ajan funktiona ja saatujen tulosten perusteella sovitettiin reaktiomekanismin differentiaaliyhtälöiden reaktionopeusvakiot. Nopeusvakioiden lämpötilariippuvuutta tutkittiin Arrheniuksen yhtälön avulla. Lisäksi määritettiin tasapainovakiot kullekin osareaktiolle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.