26 resultados para Intrinsic and extrinsic conductors
Resumo:
This dissertation approaches the manifestations of ideology in U.S. Strategic Communication. The discussion approaches Strategic Communication by relating it to the Enlightenment narratives and suggesting these narratives maintain similar social and political functions. This dissertation aims to address the key contents and mechanisms of Strategic Communication by covering the perspectives of (i) communication as leadership as well as (ii) communication as discourse , i.e. practice and contents. Throughout the empirical part of the dissertation, the communication theoretical discussion is supported by a methodological framework that bridges Critical Discourse Analysis (CDA) and functional language theory. According to the principles of CDA, Strategic Communication is treated as ideological, hegemonic discourse that impacts social order. The primary method of analysis is transitivity analysis, which is concerned with how language and its patterns construe reality. This analysis is complemented with a discussion on the rituals of production and interpretation, which can be treated as visual extensions of textual transitivity. The concept of agency is the key object of analysis. From the perspective of leadership, Strategic Communication is essentially a leadership model through which the organization defines itself, its aims and legitimacy. This dissertation arrives to the conclusion that Strategic Communication is used not only as a concept for managing Public Relations and information operations. It is an esse ntial asset in the inter-organization management of its members. The current developments indicate that the concept is developing towards even heavier measures of control. From the perspective of language and discourse, the key narratives of Strategic Communication are advocated with the intrinsic values of democracy and technological progress as the prerequisites of ethics and justice. The transitivity patterns reveal highly polarized agency. The agency of the Self is typically outsourced to technology. Further, the transitivity pa tterns demonstrate how the effects-centric paradigm of warfare has created a lexicon that is ideologically exclusive. It has led to the development of two mutually exclusive sets of vocabulary, where the desc riptions of legitimate ac tion exclude Others by default. These ideological discourses have become naturalized in the official vocabulary of strategic planning and le adership. Finally, the analysis of the images of the captures and deaths of Saddam Hussein, Osama bin Laden and Muammar Gaddafi bring the discussion back to the themes of the Enlightenment by demonstrating how democracy is framed to serve political purposes. The images of democracy are essentially images of violence. Contrary to the official, instrumental and humanitari an narratives of Strategic Communication, it is the grammar of expressive, violent rituals that serve as the instrument of unity.
Resumo:
The objective of this study was to understand how organizational knowledge governance mechanisms affect individual motivation, opportunity, and the ability to share knowledge (MOA framework), and further, how individual knowledge-sharing conditions affect actual knowledge sharing behaviour. The study followed the knowledge governance approach and a micro-foundations perspective to develop a theoretical model and hypotheses, which could explain the casual relationships between knowledge governance mechanisms, individual knowledge sharing conditions, and individual knowledge sharing behaviour. The quantitative research strategy and multivariate data analysis techniques (SEM) were used in the hypotheses testing with a survey dataset of 256 employees from eleven military schools of Finnish Defence Forces (FDF). The results showed that “performance-based feedback and rewards” affects employee’s “intrinsic motivation towards knowledge sharing”, that “lateral coordination” affects employee’s “knowledge self-efficacy”, and that ”training and development” is positively related to “time availability” for knowledge sharing but affects negatively employee’s knowledge self-efficacy. Individual motivation and knowledge self-efficacy towards knowledge sharing affected knowledge sharing behaviour when work-related knowledge was shared 1) between employees in a department and 2) between employees in different departments, however these factors did not play a crucial role in subordinate–superior knowledge sharing. The findings suggest that individual motivation, opportunity, and the ability towards knowledge sharing affects individual knowledge sharing behaviour differently in different knowledge sharing situations. Furthermore, knowledge governance mechanisms can be used to manage individual-level knowledge sharing conditions and individual knowledge sharing behaviour but their affect also vary in different knowledge sharing situations.
Resumo:
Tämän tutkimuksen tavoitteena on selvittää miten käytäntöyhteisö edistää tiedon jakamista ja uuden tiedon luomista. Tutkimus on laadullinen tapaustutkimus toimitusjohtajien keskinäisestä käytäntöyhteisöstä. Tutkimusaineisto on kerätty puolistrukturoiduilla haastatteluilla, lisäksi on hyödynnetty havainnointia ja kirjallista materiaalia. Aineisto on analysoitu abduktiivisesti sisällönanalyysimenetelmällä. Tutkimuksen tulosten mukaan käytäntöyhteisössä tietoprosessien edellytyksinä on sekä sosiaalisia ja vuorovaikutukseen liittyviä että tiedolliseen monimuotoisuuteen ja yhtenevään tietoperustaan liittyviä tekijöitä. Tulokset tuovat esiin mekanismeja tiedon jakamisen ja uuden tiedon luomisen edistämiseksi käytäntöyhteisöissä. Käytäntöyhteisöön osallistumista ohjaavat pääasiassa sisäiset motiivit, joista korostuivat vertaistuki, verkostoituminen ja informaation vaihto. Osa sisäisistä hyödyistä johtaa toisiin sisäisiin hyötyihin ja osa myös ulkoisiin hyötyihin.
Resumo:
The purpose of this thesis is to analyze the effects of tangible and intangible incentives on the dimensions of motivation and organizational innovativeness in the context of different organizational cultures. Theory suggests that an antecedent of innovativeness is individual creativity of employees, which is influenced by intrinsic motivation, flexible organizational structures, and transformational leadership. Empirical evidence for this research is derived from 424 respondents representing technology-driven industries in Finland. Data is collected through an online questionnaire and analyzed using SPSS statistics software. The results imply that intangible incentives and intrinsic motivation have an important role in determining organizational innovativeness. The positive relationships of intangible incentives, intrinsic motivation and innovativeness seem to be higher in flexible organizational cultures. As practical implications, managers should foster flexible organizational cultures that highlight employee empowerment. The motivating power of non-financial intrinsic incentives and recognition of good work should not be undermined when compared to tangible monetary rewards.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
The cell is continuously subjected to various forms of external and intrinsic proteindamaging stresses, including hyperthermia, pathophysiological states, as well as cell differentiation and proliferation. Proteindamaging stresses result in denaturation and improper folding of proteins, leading to the formation of toxic aggregates that are detrimental for various pathological conditions, including Alzheimer’s and Huntington’s diseases. In order to maintain protein homeostasis, cells have developed different cytoprotective mechanisms, one of which is the evolutionary well-conserved heat shock response. The heat shock response results in the expression of heat shock proteins (Hsps), which act as molecular chaperones that bind to misfolded proteins, facilitate their refolding and prevent the formation of protein aggregates. Stress-induced expression of Hsps is mediated by a family of transcription factors, the heat shock factors, HSFs. Of the four HSFs found in vertebrates, HSF1-4, HSF1 is the major stress-responsive factor that is required for the induction of the heat shock response. HSF2 cannot alone induce Hsps, but modulates the heat shock response by forming heterotrimers with HSF1. HSFs are not only involved in the heat shock response, but they have also been found to have a function in development, neurodegenerative disorders, cancer, and longevity. Therefore, insight into how HSFs are regulated is important for the understanding of both normal physiological and disease processes. The activity of HSF1 is mainly regulated by intricate post-translational modifications, whereas the activity of HSF2 is concentrationdependent. However, there is only limited understanding of how the abundance of HSF2 is regulated. This study describes two different means of how HSF2 levels are regulated. In the first study it was shown that microRNA miR-18, a member of the miR-17~92 cluster, directly regulates Hsf2 mRNA stability and thus protein levels. HSF2 has earlier been shown to play a profound role in the regulation of male germ cell maturation during the spermatogenesis. The effect on miR-18 on HSF2 was examined in vivo by transfecting intact seminiferous tubules, and it was found that inhibition of miR-18 resulted in increased HSF2 levels and modified expression of the HSF2 targets Ssty2 and Speer4a. HSF2 has earlier been reported to modulate the heat shock response by forming heterotrimers with HSF1. In the second study, it was shown that HSF2 is cleared off the Hsp70 promoter and degraded by the ubiquitinproteasome pathway upon acute stress. By silencing components of the anaphase promoting complex/cyclosome (APC/C), including the co-activators Cdc20 and Cdh1, it was shown that APC/C mediates the heatinduced ubiquitylation of HSF2. Furthermore, down-regulation of Cdc20 was shown to alter the expression of heat shock-responsive genes. Next, we studied if APC/C-Cdc20, which controls cell cycle progression, also regulates HSF2 during the cell cycle. We found that both HSF2 mRNA and protein levels decreased during mitosis in several but not all human cell lines, indicating that HSF2 has a function in mitotic cells. Interestingly, although transcription is globally repressed during mitosis, mainly due to the displacement of RNA polymerase II and transcription factors, including HSF1, from the mitotic chromatin, HSF2 is capable of binding DNA during mitosis. Thus, during mitosis the heat shock response is impaired, leaving mitotic cells vulnerable to proteotoxic stress. However, in HSF2-deficient mitotic cells the Hsp70 promoter is accessible to both HSF1 and RNA polymerase II, allowing for stress-inducible Hsp expression to occur. As a consequence HSF2-deficient mitotic cells have a survival advantage upon acute heat stress. The results, presented in this thesis contribute to the understanding of the regulatory mechanisms of HSF2 and its function in the heat shock response in both interphase and mitotic cells.
Resumo:
Tämän tutkimuksen tarkoituksena oli tunnistaa organisaation sisäisiin tietäysverkostoihin ja työntekijöiden verkostorooleihin vaikuttavia tekijöitä. Tutkimusongelmaa tarkasteltiin tietojohtamisen tietoperustaisen näkemyksen, sosiaalisen pääoman ja verkostotutkimuksen teoreettisesta viitekehyksestä. Tutkimus toteutettiin tapaustutkimuksena suomalaisessa teollisuusorganisaatiossa. Tutkimuksen empiirisessä osassa käytettiin sekä kvantitatiivista että kvalitatiivista tutkimusmenetelmää. Kvantitatiivinen tutkimusaineisto kerättiin strukturoidulla kyselylomakkeella ja analysoitiin sosiaalisella verkostoanalyysillä. Kvalitatiivinen tutkimusaineisto kerättiin haastatteluilla ja analysoitiin abduktiivisesti sisällönanalyysimenetelmällä. Tutkimuksen tulosten mukaan tietämysverkostoihin ja verkostorooleihin vaikuttavat sekä ulkoiset että sisäiset tekijät. Ulkoisia tekijöitä ovat ympäristöön ja olosuhteisiin vaikuttavat tekijät. Sisäisiä tekijöitä ovat puolestaan henkilön luonteenpiirteet, osaaminen, motivaatio sekä tietämys. Tämän tutkimuksen tulosten mukaan sisäiset tekijät selittävät työntekijöiden välisiä eroja. Työntekijöiden käyttäytymiseen, motivaatioon, asenteisiin ja osaamiseen voidaan vaikuttaa henkilöstöjohtamisen menetelmillä. Ihmisen persoonallisuus sen sijaan pysyy suhteellisen muuttumattomana. Tietojohtamisen, tietämysverkostojen ja verkostoroolien aikaisemmissa tutkimuksissa ei ole kuitenkaan tarkasteltu persoonallisuuden piirteiden vaikutusta tietämyksen siirtämiseen.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.
Resumo:
In this thesis, bacteriorhodopsin (BR) photosensor’s optical and electrical properties were studied. The BR sensor consisted of a dry film with BR in polyvinyl alcohol and covered with transparent conductors. In the experiments the BR photocycle was started with two lasers. The characteristics of the BR sensor were measured in two ways. The first approach was theoretical and it required knowing the laser parameters. The second way required assembling a measurement setup for the optical response measurements. However, no measurable results were obtained due to low laser power. The photoelectric response was measured in the experiments with two laser systems and the amplifier was tested. In the experiment with a Cavitar laser, the photoelectric response was obtained. In the experiment with FemtoFiber Pro laser, the photoelectric response was not measured. The expected amplitude of the response was obtained. The experimental data was analyzed and possible solutions for reducing the interference were given.