32 resultados para Integrated circuits Ultra large scale integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As technology geometries have shrunk to the deep submicron regime, the communication delay and power consumption of global interconnections in high performance Multi- Processor Systems-on-Chip (MPSoCs) are becoming a major bottleneck. The Network-on- Chip (NoC) architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication issues such as performance limitations of long interconnects and integration of large number of Processing Elements (PEs) on a chip. The choice of routing protocol and NoC structure can have a significant impact on performance and power consumption in on-chip networks. In addition, building a high performance, area and energy efficient on-chip network for multicore architectures requires a novel on-chip router allowing a larger network to be integrated on a single die with reduced power consumption. On top of that, network interfaces are employed to decouple computation resources from communication resources, to provide the synchronization between them, and to achieve backward compatibility with existing IP cores. Three adaptive routing algorithms are presented as a part of this thesis. The first presented routing protocol is a congestion-aware adaptive routing algorithm for 2D mesh NoCs which does not support multicast (one-to-many) traffic while the other two protocols are adaptive routing models supporting both unicast (one-to-one) and multicast traffic. A streamlined on-chip router architecture is also presented for avoiding congested areas in 2D mesh NoCs via employing efficient input and output selection. The output selection utilizes an adaptive routing algorithm based on the congestion condition of neighboring routers while the input selection allows packets to be serviced from each input port according to its congestion level. Moreover, in order to increase memory parallelism and bring compatibility with existing IP cores in network-based multiprocessor architectures, adaptive network interface architectures are presented to use multiple SDRAMs which can be accessed simultaneously. In addition, a smart memory controller is integrated in the adaptive network interface to improve the memory utilization and reduce both memory and network latencies. Three Dimensional Integrated Circuits (3D ICs) have been emerging as a viable candidate to achieve better performance and package density as compared to traditional 2D ICs. In addition, combining the benefits of 3D IC and NoC schemes provides a significant performance gain for 3D architectures. In recent years, inter-layer communication across multiple stacked layers (vertical channel) has attracted a lot of interest. In this thesis, a novel adaptive pipeline bus structure is proposed for inter-layer communication to improve the performance by reducing the delay and complexity of traditional bus arbitration. In addition, two mesh-based topologies for 3D architectures are also introduced to mitigate the inter-layer footprint and power dissipation on each layer with a small performance penalty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mikropiirien valmistus- ja suunnittelutekniikoiden kehittyminen mahdollistaa yhä monimutkaisempien mikropiirien valmistamisen. Piirien verifioinnista onkin tullut prosessin aikaa vievin osa,sillä kompleksisuuden kasvaessa kasvaa verifioinnin tarve eksponentiaalisesti. Vaikka erinäisiä strategioita piirien integroinnin verifiointiin on esitetty, mm. verifioinnin jakaminen koko suunnitteluprosessin ajalle, jopa yli puolet koko piirin suunnitteluun ja valmistukseen käytetystä työmäärästä kuluu verifiointiin. Uudelleenkäytettävät komponentit ovat pääosassa piirin suunnittelussa, mutta verifioinnissa uudelleenkäytettävyyttä ei ole otettu kunnolla käyttöön ainakaan verifiointiohjelmistojen osalta. Tämä diplomityö esittelee uudelleenkäytettävän mikropiirien verifiointiohjelmistoarkkitehtuurin, jolla saadaan verifiointitaakkaa vähennettyä poistamalla verifioinnissa käytettävien ohjelmistojen uudelleensuunnittelun ja toteuttamisen tarvetta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current-day web search engines (e.g., Google) do not crawl and index a significant portion of theWeb and, hence, web users relying on search engines only are unable to discover and access a large amount of information from the non-indexable part of the Web. Specifically, dynamic pages generated based on parameters provided by a user via web search forms (or search interfaces) are not indexed by search engines and cannot be found in searchers’ results. Such search interfaces provide web users with an online access to myriads of databases on the Web. In order to obtain some information from a web database of interest, a user issues his/her query by specifying query terms in a search form and receives the query results, a set of dynamic pages that embed required information from a database. At the same time, issuing a query via an arbitrary search interface is an extremely complex task for any kind of automatic agents including web crawlers, which, at least up to the present day, do not even attempt to pass through web forms on a large scale. In this thesis, our primary and key object of study is a huge portion of the Web (hereafter referred as the deep Web) hidden behind web search interfaces. We concentrate on three classes of problems around the deep Web: characterization of deep Web, finding and classifying deep web resources, and querying web databases. Characterizing deep Web: Though the term deep Web was coined in 2000, which is sufficiently long ago for any web-related concept/technology, we still do not know many important characteristics of the deep Web. Another matter of concern is that surveys of the deep Web existing so far are predominantly based on study of deep web sites in English. One can then expect that findings from these surveys may be biased, especially owing to a steady increase in non-English web content. In this way, surveying of national segments of the deep Web is of interest not only to national communities but to the whole web community as well. In this thesis, we propose two new methods for estimating the main parameters of deep Web. We use the suggested methods to estimate the scale of one specific national segment of the Web and report our findings. We also build and make publicly available a dataset describing more than 200 web databases from the national segment of the Web. Finding deep web resources: The deep Web has been growing at a very fast pace. It has been estimated that there are hundred thousands of deep web sites. Due to the huge volume of information in the deep Web, there has been a significant interest to approaches that allow users and computer applications to leverage this information. Most approaches assumed that search interfaces to web databases of interest are already discovered and known to query systems. However, such assumptions do not hold true mostly because of the large scale of the deep Web – indeed, for any given domain of interest there are too many web databases with relevant content. Thus, the ability to locate search interfaces to web databases becomes a key requirement for any application accessing the deep Web. In this thesis, we describe the architecture of the I-Crawler, a system for finding and classifying search interfaces. Specifically, the I-Crawler is intentionally designed to be used in deepWeb characterization studies and for constructing directories of deep web resources. Unlike almost all other approaches to the deep Web existing so far, the I-Crawler is able to recognize and analyze JavaScript-rich and non-HTML searchable forms. Querying web databases: Retrieving information by filling out web search forms is a typical task for a web user. This is all the more so as interfaces of conventional search engines are also web forms. At present, a user needs to manually provide input values to search interfaces and then extract required data from the pages with results. The manual filling out forms is not feasible and cumbersome in cases of complex queries but such kind of queries are essential for many web searches especially in the area of e-commerce. In this way, the automation of querying and retrieving data behind search interfaces is desirable and essential for such tasks as building domain-independent deep web crawlers and automated web agents, searching for domain-specific information (vertical search engines), and for extraction and integration of information from various deep web resources. We present a data model for representing search interfaces and discuss techniques for extracting field labels, client-side scripts and structured data from HTML pages. We also describe a representation of result pages and discuss how to extract and store results of form queries. Besides, we present a user-friendly and expressive form query language that allows one to retrieve information behind search interfaces and extract useful data from the result pages based on specified conditions. We implement a prototype system for querying web databases and describe its architecture and components design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Euroopan Unionin asettamat tavoitteet uusiutuvien energialähteiden lisäämiselle sähköntuotannossa ovat johtamassa tuulivoimalla tuotetun sähkön merkittävään kasvamiseen. Suomeenkin suunnitellaan suuria, useista kymmenistä tuulivoimaloista koostuvia tuulivoimapuistoja niin maalle kuin merelle. Tuulivoimapuiston suunnittelu on kokonaisuudessaan pitkä prosessi, johon sisältyy sähköteknisen suunnittelun lisäksi myös ympäristövaikutusten arviointiohjelma ja erinäiset lupa-asiat. Tämän diplomityön tavoitteena on kehittää menetelmiä, joiden avulla suurten tuulivoimapuistojen keskijänniteverkon teknistaloudellinen suunnittelu helpottuisi. Tuulivoimapuiston keskijänniteverkon parhaan teknistaloudellisen ratkaisun löytyminen riippuu useista muuttujista. Työssä kehitettiin laskentamallipohja, jonka avulla voidaan helposti ja nopeasti tarkastella erilaisten ratkaisuiden vaikutusta kokonaisuuteen. Tavoite on optimoida teknistaloudellisessa mielessä koko tuulivoimapuiston sisäinen keskijänniteverkko. Kehitettyä laskentamallipohjaa hyödynnettiin esimerkkiprojektina olleen tuulivoimapuiston keskijänniteverkon suunnittelussa. Mallin avulla voidaan laskea nopeasti verkon kustannukset koko pitoajalta. Kustannuslaskelmissa otetaan huomioon investointi-, häviö- ja keskeytyskustannukset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results shown in this thesis are based on selected publications of the 2000s decade. The work was carried out in several national and EC funded public research projects and in close cooperation with industrial partners. The main objective of the thesis was to study and quantify the most important phenomena of circulating fluidized bed combustors by developing and applying proper experimental and modelling methods using laboratory scale equipments. An understanding of the phenomena plays an essential role in the development of combustion and emission performance, and the availability and controls of CFB boilers. Experimental procedures to study fuel combustion behaviour under CFB conditions are presented in the thesis. Steady state and dynamic measurements under well controlled conditions were carried out to produce the data needed for the development of high efficiency, utility scale CFB technology. The importance of combustion control and furnace dynamics is emphasized when CFB boilers are scaled up with a once through steam cycle. Qualitative information on fuel combustion characteristics was obtained directly by comparing flue gas oxygen responses during the impulse change experiments with fuel feed. A one-dimensional, time dependent model was developed to analyse the measurement data Emission formation was studied combined with fuel combustion behaviour. Correlations were developed for NO, N2O, CO and char loading, as a function of temperature and oxygen concentration in the bed area. An online method to characterize char loading under CFB conditions was developed and validated with the pilot scale CFB tests. Finally, a new method to control air and fuel feeds in CFB combustion was introduced. The method is based on models and an analysis of the fluctuation of the flue gas oxygen concentration. The effect of high oxygen concentrations on fuel combustion behaviour was also studied to evaluate the potential of CFB boilers to apply oxygenfiring technology to CCS. In future studies, it will be necessary to go through the whole scale up chain from laboratory phenomena devices through pilot scale test rigs to large scale, commercial boilers in order to validate the applicability and scalability of the, results. This thesis shows the chain between the laboratory scale phenomena test rig (bench scale) and the CFB process test rig (pilot). CFB technology has been scaled up successfully from an industrial scale to a utility scale during the last decade. The work shown in the thesis, for its part, has supported the development by producing new detailed information on combustion under CFB conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memristive computing refers to the utilization of the memristor, the fourth fundamental passive circuit element, in computational tasks. The existence of the memristor was theoretically predicted in 1971 by Leon O. Chua, but experimentally validated only in 2008 by HP Labs. A memristor is essentially a nonvolatile nanoscale programmable resistor — indeed, memory resistor — whose resistance, or memristance to be precise, is changed by applying a voltage across, or current through, the device. Memristive computing is a new area of research, and many of its fundamental questions still remain open. For example, it is yet unclear which applications would benefit the most from the inherent nonlinear dynamics of memristors. In any case, these dynamics should be exploited to allow memristors to perform computation in a natural way instead of attempting to emulate existing technologies such as CMOS logic. Examples of such methods of computation presented in this thesis are memristive stateful logic operations, memristive multiplication based on the translinear principle, and the exploitation of nonlinear dynamics to construct chaotic memristive circuits. This thesis considers memristive computing at various levels of abstraction. The first part of the thesis analyses the physical properties and the current-voltage behaviour of a single device. The middle part presents memristor programming methods, and describes microcircuits for logic and analog operations. The final chapters discuss memristive computing in largescale applications. In particular, cellular neural networks, and associative memory architectures are proposed as applications that significantly benefit from memristive implementation. The work presents several new results on memristor modeling and programming, memristive logic, analog arithmetic operations on memristors, and applications of memristors. The main conclusion of this thesis is that memristive computing will be advantageous in large-scale, highly parallel mixed-mode processing architectures. This can be justified by the following two arguments. First, since processing can be performed directly within memristive memory architectures, the required circuitry, processing time, and possibly also power consumption can be reduced compared to a conventional CMOS implementation. Second, intrachip communication can be naturally implemented by a memristive crossbar structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aims of the present report are to describe the current state of railway transport in Russia, and to gather standpoints of Russian private transportation logistics sector towards the development of new railway connection called Rail Baltica Growth Corridor, connecting North-West Russia with Germany through the Baltic States and Poland. North-West Russia plays important role not only in Russian logistics, but also wider European markets as in container sea ports handling is approx. 2.5 mill. TEU p.a. and handling volume in all terminals is above 190 million tons p.a. The whole transportation logistics sector is shortly described as an operational environment for railways – this is done through technical and economic angles. Transportation development is always going in line with economics of the country, so the analysis on economical development is also presented. Logistics integration of the country is strongly influenced by its engagement in the international trade. Although, raw material handling at sea ports and container transports (imports) are blossoming, domestic transportation market is barely growing (in long-term perspective). Thus, recent entrance of Russia into World Trade Organization (WTO) is analyzed theme in this research, as the WTO is an important regulator of the foreign trade and enabler of volume growth in foreign trade related transportation logistics. However, WTO membership can influence negatively the development of Russia’s own industry and its volumes (these have been uncompetitive in global markets for decades). Data gathering in empirical part was accomplished by semi-structured case study interviews among North-West Russian logistics sector actors (private). These were conducted during years 2012-2013, and research compiles findings out of ten case company interviews. Although, there was no sea port involved in the study, most of the interviewed companies relied in European Logistics within significant parts in short sea shipping and truck combined transportation chains (in Russian part also using railways). As the results of the study, it could be concluded that Rail Baltica is seen as possible transport corridor in most of the interviewed companies, if there is enough cargo available. However, interviewees are a bit sceptical, because major and large-scale infrastructural improvements are needed. Delivery time, frequency and price level are three main factors influencing the attractiveness of Rail Baltica route. Price level is the most important feature, but if RB can offer other advantages such as higher frequency, shorter lead times or more developed set of value-added services, then some flexibility is possible for the price level. Environmental issues are not the main criteria of today, but are recognized and discussed among customers. Great uncertainty exists among respondents e.g. on forthcoming sulphur oxide ban on Baltic Sea shipping (whether or not it is going to be implemented in Russia). Rather surprisingly, transportation routes to Eastern Europe and Mediterranean area are having higher value and price space than those to Germany/Central Europe. Border crossing operations (traction monopoly at rails and customs), gauge widths as well as unclear decision-making processes (in Russia), are named as hindering factors. Performance standards for European connected logistics among Russian logistics sector representatives are less demanding as compared to neighbourhood countries belonging to EU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, liquid-solid flow in industrial scale is modeled using the commercial software of Computational Fluid Dynamics (CFD) ANSYS Fluent 14.5. In literature, there are few studies on liquid-solid flow in industrial scale, but any information about the particular case with modified geometry cannot be found. The aim of this thesis is to describe the strengths and weaknesses of the multiphase models, when a large-scale application is studied within liquid-solid flow, including the boundary-layer characteristics. The results indicate that the selection of the most appropriate multiphase model depends on the flow regime. Thus, careful estimations of the flow regime are recommended to be done before modeling. The computational tool is developed for this purpose during this thesis. The homogeneous multiphase model is valid only for homogeneous suspension, the discrete phase model (DPM) is recommended for homogeneous and heterogeneous suspension where pipe Froude number is greater than 1.0, while the mixture and Eulerian models are able to predict also flow regimes, where pipe Froude number is smaller than 1.0 and particles tend to settle. With increasing material density ratio and decreasing pipe Froude number, the Eulerian model gives the most accurate results, because it does not include simplifications in Navier-Stokes equations like the other models. In addition, the results indicate that the potential location of erosion in the pipe depends on material density ratio. Possible sedimentation of particles can cause erosion and increase pressure drop as well. In the pipe bend, especially secondary flows, perpendicular to the main flow, affect the location of erosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämän diplomityötutkimuksen tarkoituksena on luoda markkinaälyyn (MI) erikoistunut funktio suurelle, globaalisti toimivalle B2B-yritykselle. Tämän päivän muut-tuvilla markkinoilla, teollisuusyrityksen on oltava markkinalähtöinen selviytyäkseen. Markkinatiedon tehokas hyödyntäminen ei pelkästään luo tietoa markkinoista, vaan tuottaa kilpailukykyistä tietoa ja toimii strategisen päätöksenteon tukena pitkällä aikavälillä. Tämä tutkimus on kvalitatiivinen toimintatutkimus, joka sisältää kirjallisuuskat-sauksen, yritystapaustutkimuksen sekä syväanalyysin yrityksen MI-ympäristöstä. Kirjallisuuskatsaus pitää sisällään teoriaa liittyen markkinaälyyn useassa eri kon-tekstissa, asiakassuhteeseen, sekä prosessinmallintamiseen. Empiiriseen osaa seuraa tutkimusmenetelmäkappale, joka sisältää kaksivaiheisen tutkimuksen mukaan lu-kien 20 päällikkötason haastattelua sekä yhden laaja-alaisen työryhmätapaamisen. Työn tuloksena syntyy kolmivaiheinen tiekartta, jonka tarkoitus on toimia pohjana uuden MI-funktion rakentamiselle Case-yrityksessä. Tuloksen mukaan MI-funktio tulisi sijoittaa yrityksen asiakasrajapintaan sekä tukea yksiköiden välistä integraa-tiota. Markkinaälyn jakaminen yrityksen sisällä vaatii käytäntöjen, tarpeiden ja ta-voitteiden systemaattista viestintää eri organisaatiotasoille, jotta yritys voi edelleen saada asiakkaalta tarpeeseen vastaavaa tietoa. Viestintä yrityksen ja asiakkaan välil-lä on oltava molemminpuolista, jotta tulokset voisivat parantaa asiakassuhdetta. Kun asiakassuhde paranee, yritys voi oppia asiakkaalta arvokasta tietoa, markkinaälyä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.