24 resultados para Instrumentation for fluorescence emission studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluoresenssiperusteiset kuvantamismenetelmät lysinurisen proteiini-intoleranssin (LPI) soluhäiriön tutkimuksessa Lysinurinen proteiini-intoleranssi on suomalaiseen tautiperintöön kuuluva autosomaalisesti peit¬tyvästi periytyvä sairaus, jonka aiheuttaa kationisten aminohappojen kuljetushäiriö munuaisten ja ohutsuolen epiteelisolujen basolateraalikalvolla. Aminohappojen kuljetushäiriö johtaa moniin oirei¬siin, kuten kasvuhäiriöön, osteoporoosiin, immuunijärjestelmän häiriöihin, oksenteluun ja runsaspro¬teiinisen ravinnon nauttimisen jälkeiseen hyperammonemiaan. LPI-geeni SLC7A7 (solute carrier family 7 member 7) koodaa y+LAT1 proteiinia, joka on basolateraali¬nen kationisten ja neutraalien aminohappojen kuljettimen kevyt ketju, joka muodostaa heterodimee¬rin raskaan alayksikön 4F2hc:n kanssa. Tällä hetkellä SLC7A7-geenistä tunnetaan yli 50 LPI:n aiheut¬tavaa mutaatiota. Tässä tutkimuksessa erityyppisiä y+LAT1:n LPI-mutaatiota sekä yhdeksän C-terminaalista polypep¬tidiä lyhentävää deleetiota kuvannettiin nisäkässoluissa y+LAT1:n GFP (green fluorescent protein) -fuusioproteiineina. Tulokset vahvistivat muissa soluissa tehdyt havainnot siitä, että 4F2hc on edel¬lytyksenä y+LAT1:n solukalvokuljetukselle, G54V-pistemutantti sijaitsee solukalvolla samoin kuin vil¬lityyppinen proteiini, mutta lukukehystä muuttavia ja proteiinia lyhentäviä mutantteja ei kuljeteta solukalvoon. Lisäksi havaittiin, että poikkeuksena tästä säännöstä ovat y+LAT1-deleetioproteiinit, joista puuttui korkeintaan 50 C-terminaalista aminohappoa. Nämä lyhentyneet kuljettimet sijaitsevat solukalvolla kuten villityyppiset ja LPI-pistemutanttiproteiinit. Dimerisaation osuutta kuljetushäiriön synnyssä tutkittiin käyttämällä fluorescence resonance energy transfer (FRET) menetelmää. Heterodimeerin alayksiköistä kloonattiin ECFP (cyan) ja EYFP (yellow) fuusioproteiinit, joita ilmennettiin nisäkässoluissa, ja FRET mitattiin virtaussytometri-FRET -menetel¬mällä (FACS-FRET). Tutkimuksissa kaikkien mutanttien havaittiin dimerisoituvan yhtä tehokkaasti. Kul¬jetushäiriön syynä ei siten ole alayksiköiden dimerisaation estyminen mutaation seurauksena. Tutkimuksessa havaittiin, että kaikki mutantti-y+LAT1-transfektiot tuottavat vähemmän transfektoi¬tuneita soluja kuin villityyppisen y+LAT1:n transfektiot. Solupopulaatioissa, joihin oli tranfektoitu lu¬kukehystä muuttava tai stop-kodonin tuottava mutaatio havaittiin suurempi kuolleisuus kuin saman näytteen transfektoitumattomissa soluissa, kun taas villityyppistä tai G54V-pistemutanttia tuottavas¬sa solupopulaatiossa oli pienempi kuolleisuus kuin saman näytteen fuusioproteiinia ilmentämättö¬missä soluissa. Tulos osoittaa mutanttiproteiinien erilaiset vaikutukset niitä ilmentäviin soluihin, joko suoraan y+LAT1:n tai 4F2hc:n kautta aiheutuneina. LPIFin SLC7A7 lähetti-RNA:n määrä ei merkittävästi poikennut villityyppisen määrästä fibroblasteissa ja lymfoblasteissa. SLC7A7:n promoottorianalyysissä oli osoitettavissa säätelyalueita geenin 5’ ei-koo¬daavalla alueella sekä ensimmäisten kahden intronin alueella. LPI-taudin tautimekanismin kannalta keskeisin tekijä on kuitenkin aminohappokuljetuksen häiriö, jonka vaikutuksesta näistä aminohapoista riippuvaiset prosessit elimistössä eivät toimi normaalisti. Havaittu virheellinen y+LAT1/4F2hc kuljetuskompleksin sijainti edellyttää lisätutkimuksia sen mahdol¬lisen kliinisen merkityksen selvittämiseksi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholesterol (Chol) is an important lipid in cellular membranes functioning both as a membrane fluidity regulator, permeability regulator and co-factor for some membrane proteins, e.g. G-protein coupled receptors. It also participates in the formation of signaling platforms and gives the membrane more mechanical strenght to prevent osmotic lysis of the cell. The sterol structure is very conserved and already minor structural modifications can completely abolish its membrane functions. The right interaction with adjacent lipids and the preference of certain lipid structures over others are also key factors in determining the membrane properties of cholesterol. Because of the many important properties of cholesterol it is of value to understand the forces and structural properties that govern the membrane behavior of this sterol. In this thesis we have used established fluorescence spectroscopy methods to study the membrane behavior of both cholesterol and some of its 3β-modified analogs. Using several fluorescent probes we have established how the acyl chain order of the two main lipid species, sphingomyelin (SM) and phosphatidylcholine (PC) affect sterol partitioning as well as characterized the membrane properties of 3β-aminocholesterol and cholesteryl phosphocholine. We concluded that cholesterol prefers SM over PC at equal acyl chain order, indicating that other structural properties besides the acyl chain order are important for sphingomyelin-sterol interactions. A positive charge at the 3β position only caused minor changes in the sterol membrane behavior compared to cholesterol. A large phosphocholine head group caused a disruption in membrane packing together with other membrane lipids with large head groups, but was also able to form stable fluid bilayers together with ceramide and cholesterol. The Ability of the large head group sterol to form bilayers together with ceramide was further explored in the last paper where cholesteryl phosphocholine/ceramide (Chol-PC/Cer) complexes were successfully used to transfer ceramide into cultured cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to study whether the use of biomethane as a transportation fuel is reasonable from climate change perspective. In order to identify potentials and challenges for the reduction of greenhouse gas (GHG) emissions, this dissertation focuses on GHG emission comparisons, on feasibility studies and on the effects of various calculation methodologies. The GHG emissions calculations are carried out by using life cycle assessment (LCA) methodologies. The aim of these LCA studies is to figure out the key parameters affecting the GHG emission saving potential of biomethane production and use and to give recommendations related to methodological choices. The feasibility studies are also carried out from the life cycle perspective by dividing the biomethane production chain for various operators along the life cycle of biomethane in order to recognize economic bottlenecks. Biomethane use in the transportation sector leads to GHG emission reductions compared to fossil transportation fuels in most cases. In addition, electricity and heat production from landfill gas, biogas or biomethane leads to GHG reductions as well. Electricity production for electric vehicles is also a potential route to direct biogas or biomethane energy to transportation sector. However, various factors along the life cycle of biomethane affect the GHG reduction potentials. Furthermore, the methodological selections have significant effects on the results. From economic perspective, there are factors related to different operators along the life cycle of biomethane, which are not encouraging biomethane use in the transportation sector. To minimize the greenhouse gas emissions from the life cycle of biomethane, waste feedstock should be preferred. In addition, energy consumption, methane leakages, digestate utilization and the current use of feedstock or biogas are also key factors. To increase the use of biomethane in the transportation sector, political steering is needed to improve the feasibility for the operators. From methodological perspective, it is important to recognize the aim of the life cycle assessment study. The life cycle assessment studies can be divided into two categories: 1.) To produce average GHG information of biomethane to evaluate the acceptability of biomethane use compared to fossil transportation fuels. 2.) To produce GHG information of biomethane related to actual decision-making situations. This helps to figure out the actual GHG emission changes in cases when feedstock, biogas or biomethane are already in other use. For example directing biogas from electricity production to transportation use does not necessarily lead to additional GHG emission reductions. The use of biomethane seems to have a lot of potential for the reduction of greenhouse gas emissions as a transportation fuel. However, there are various aspects related to production processes, to the current use of feedstock or biogas and to the feasibility that have to be taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial ovarian cancer (EOC) is usually diagnosed in an advanced stage. The prognosis depends highly on the amount of the residual tumor in surgery. In patients with extensive disease, neoadjuvant chemotherapy (NACT) is used to diminish the tumor load before debulking surgery. New non-invasive methods are needed to preoperatively evaluate the disease dissemination and operability. [18F] FDG PET/CT (Positron emission tomography/computed tomography) is a promising method for cancer diagnostics and staging. The biomarker profiles during treatment can predict patient’s outcome. This prospective study included 41 EOC patients, 21 treated with primary surgery and 20 with NACT and interval surgery. The performances of preoperative contrast enhanced PET/CT (PET/ceCT) and diagnostic CT (ceCT) were compared. Perioperative visual estimation of tumor spread was studied in primary and interval surgery. The profile of the serum marker HE4 (Human epididymis 4) during primary chemotherapy was evaluated. In primary surgery, surgical findings were found to form an adequate reference standard for imaging studies. After NACT, the sensitivity for visual estimation of cancer dissemination was significantly worse. Preoperative PET/ceCT was more effective than ceCT alone in detecting extra-abdominal disease spread. The high number of supradiaphragmatic lymph node metastases detected by PET/ceCT at the time of diagnosis brings new insight in EOC spread patterns. The sensitivity of both PET/CT and ceCT remained modest in intra-abdominal areas important to operability. The HE4 profile was in concordance with the CA125 profile during primary chemotherapy. Its role in the evaluation of EOC chemotherapy response will be clarified in further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point-of-care (POC) –diagnostics is a field with rapidly growing market share. As these applications become more widely used, there is an increasing pressure to improve their performance to match the one of a central laboratory tests. Lanthanide luminescence has been widely utilized in diagnostics because of the numerous advantages gained by the utilization of time-resolved or anti-Stokes detection. So far the use of lanthanide labels in POC has been scarce due to limitations set by the instrumentation required for their detection and the shortcomings, e.g. low brightness, of these labels. Along with the advances in the research of lanthanide luminescence, and in the field of semiconductors, these materials are becoming a feasible alternative for the signal generation also in the future POC assays. The aim of this thesis was to explore ways of utilizing time-resolved detection or anti-Stokes detection in POC applications. The long-lived fluorescence for the time-resolved measurement can be produced with lanthanide chelates. The ultraviolet (UV) excitation required by these chelates is cumbersome to produce with POC compatible fluorescence readers. In this thesis the use of a novel light-harvesting ligand was studied. This molecule can be used to excite Eu(III)-ions at wavelengths extending up to visible part of the spectrum. An enhancement solution based on this ligand showed a good performance in a proof-of-concept -bioaffinity assay and produced a bright signal upon 365 nm excitation thanks to the high molar absorptivity of the chelate. These features are crucial when developing miniaturized readers for the time-resolved detection of fluorescence. Upconverting phosphors (UCPs) were studied as an internal light source in glucose-sensing dry chemistry test strips and ways of utilizing their various emission wavelengths and near-infrared excitation were explored. The use of nanosized NaYF :Yb3+,Tm3+-particles enabled the replacement of an external UV-light source with a NIR-laser and gave an additional degree of freedom in the optical setup of the detector instrument. The new method enabled a blood glucose measurement with results comparable to a current standard method of measuring reflectance. Microsized visible emitting UCPs were used in a similar manner, but with a broad absorbing indicator compound filtering the excitation and emission wavelengths of the UCP. This approach resulted in a novel way of benefitting from the non-linear relationship between the excitation power and emission intensity of the UCPs, and enabled the amplification of the signal response from the indicator dye.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Positron emission tomography imaging has both academic and applied uses in revealing the distribution and density of different molecular targets in the central nervous system. Following the significant progress made with the dopamine D2 receptor, advances have been made in developing PET tracers to allow analysis of receptor occupancy of many other receptor types as well as evaluating changes in endogenous synaptic transmitter concentrations of transmitters e.g. serotonin and noradrenaline. Noradrenergic receptors are divided into α1-, α2- and β-adrenoceptor subfamilies, in humans each of which is composed of three receptor subtypes. The α2-adrenoceptors have an important presynaptic auto-inhibitory function on noradrenaline release but they also have postsynaptic roles in modulating the release of other neurotransmitters, such as serotonin and dopamine. One of the subtypes, the α2C-adrenoceptor, has been detected at distinct locations in the central nervous system, most notably the dorsal striatum. Several serious neurological conditions causing dementia, Alzheimer’s disease and Parkinson’s disease have been linked to disturbed noradrenergic signaling. Furthermore, altered noradrenergic signaling has also been implicated in conditions like ADHD, depression, anxiety and schizophrenia. In order to benefit future research into these central nervous system disorders as well as being useful in the clinical development of drugs affecting brain noradrenergic neurotransmission, validation work of a novel tracer for positron emission tomography studies in humans was performed. Altogether 85 PET imaging experiments were performed during four separate clinical trials. The repeatability of [11C]ORM-13070 binding was tested in healthy individuals, followed by a study to evaluate the dose-dependent displacement of [11C]ORM-13070 from α2C-adrenoceptors by a competing ligand, and the final two studies examined the sensitivity of [11C]ORM-13070 binding to reflect changes in endogenous noradrenaline levels. The repeatability of [11C]ORM-13070 binding was very high. The binding properties of the tracer allowed for a reliable estimation of α2C-AR occupancy by using the reference tissue ratio method with low test-retest variability. [11C]ORM-13070 was dose-dependently displaced from its specific binding sites by the subtype-nonselective α2-adrenoceptor antagonist atipamezole, and thus it proved suitable for use in clinical drug development of novel α2C-adrenoceptor ligands e.g. to determine the best doses and dosing intervals for clinical trials. Convincing experimental evidence was gained to support the suitability of [11C]ORM-13070 for detecting an increase in endogenous synaptic noradrenaline in the human brain. Tracer binding in the thalamus tended to increase in accordance with reduced activity of noradrenergic projections from the locus coeruleus, although statistical significance was not reached. Thus, the investigation was unable to fully validate [11C]ORM-13070 for the detection of pharmacologically evoked reductions in noradrenaline levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blazar research offers a view to one of the most energetic physical processes known to man. The high-energy end of blazar emission has been probed by the Fermi satellite mission since 2008, and it has catalogued more than a thousand gamma- ray bright blazars. However, a large fraction of these sources have no spectroscopic classification at lower energies. In this thesis, optical spectra for sixteen Fermi blazar candidates are published. The optical spectroscopic data have been observed with the Nordic Optical Telescope on the island of La Palma, Spain, during the summer of 2015. The ALFOSC instrument was used, with exposure times from 800 to 3000 seconds per target, yielding signal- to-noise ratios from 10 to 38. All of the sixteen targets show a flat, featureless optical spectrum, characteristic to BL Lacertae objects. The spectra of two targets contain faint emission features, and faint absorption features are seen in three targets. However, none of the features could be reliably identified. Therefore all of the targets are classified as BL Lacertae objects. This classification is supported by the statistical distribution of Fermi -selected active galactic nuclei; more than half of the identified Fermi AGN are BL Lacs. However, the classification of this sample could be improved further with a new observing campaign. This is especially true for the objects with uncertain spectral features.