39 resultados para ISLAND FILMS
Resumo:
Bodies, Borders, Crossings -ryhmänäyttely, Covernors Island rantakasarmi, kuraattorit Leena-Maija Rossi ja Kari Soinio, tuottaja Frame ja Suomen New Yorkin kulttuuri-instituutti. Esillä videoteos Miss Kong.
Resumo:
The main objective of the present study was to verify the approach on starch-gelatin blending for the paperboard coating formulations with enhanced barrier and mechanical properties. Based on that, another objective was to find out, how the approach will function with wood-based polysaccharides (CMC, EHEC and HPC) by analyzing their barrier properties and convertibility. The last objective was to find out, if pigments can be used in the composition of polysaccharide-protein blends without causing any negative effect on stated properties. The whole process chain of the barrier coating development was studied in the research. The methodology applied included pilot-scale coating and converting trials for the evaluation of mechanical properties of obtained coatings, namely their exposure to cracking with the loss of barrier properties. The results obtained indicated that the combination of starch with gelatin, in fact, improves the grease barrier properties and flexibility of starch-based coatings, thereby confirming the offered approach. The similar results were obtained for CMC, exhibited elevated barrier properties and surface coverage, proving that the approach also functions with wood-based polysaccharides. The introduction of equal amounts of talc gave various effects at different gelatin dosages on barrier properties of wood-based polysaccharides. Mainly, the elevation of grease barrier properties was observed. The convertibility of talc-filled coatings was not sufficient.
Resumo:
Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.
Resumo:
At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.
Resumo:
Production and generation of electrical power is evolving to more environmental friendly technologies and schemes. Pushed by the increasing cost of fossil fuels, the operational costs of producing electrical power with fossil fuels and the effect in the environment, like pollution and global warming, renewable energy sources gain con-stant impulse into the global energy economy. In consequence, the introduction of distributed energy sources has brought a new complexity to the electrical networks. In the new concept of smart grids and decen-tralized power generation; control, protection and measurement are also distributed and requiring, among other things, a new scheme of communication to operate with each other in balance and improve performance. In this research, an analysis of different communication technologies (power line communication, Ethernet over unshielded twisted pair (UTP), optic fiber, Wi-Fi, Wi-MAX, and Long Term Evolution) and their respective characteristics will be carried out. With the objective of pointing out strengths and weaknesses from different points of view (technical, economical, deployment, etc.) to establish a richer context on which a decision for communication approach can be done depending on the specific application scenario of a new smart grid deployment. As a result, a description of possible optimal deployment solutions for communication will be shown considering different options for technologies, and a mention of different important considerations to be taken into account will be made for some of the possible network implementation scenarios.
Resumo:
Tropical forests are sources of many ecosystem services, but these forests are vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in Tanzania. The causes of change are multidimensional and strongly interdependent, and only understanding them comprehensively helps to change the ongoing unsustainable trends of forest decline. Ongoing forest changes, their spatiality and connection to humans and environment can be studied with the methods of Land Change Science. The knowledge produced with these methods helps to make arguments about the actors, actions and causes that are behind the forest decline. In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its changes between 1996 and 2009. The cover and changes are measured with often used remote sensing methods of automated land cover classification and post-classification comparison from medium resolution satellite images. Kernel Density Estimation is used to determine the clusters of change, sub-area –analysis provides information about the differences between regions, while distance and regression analyses connect changes to environmental factors. These analyses do not only explain the happened changes, but also allow building quantitative and spatial future scenarios. Similar study has not been made for Unguja and therefore it provides new information, which is beneficial for the whole society. The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these forests are disappearing annually. Besides deforestation also vertical degradation and spatial changes are significant problems. Deforestation is most severe in the communal indigenous forests, but also agroforests are decreasing. Spatially deforestation concentrates to the areas close to the coastline, population and Zanzibar Town. Biophysical factors on the other hand do not seem to influence the ongoing deforestation process. If the current trend continues there should be approximately 485 km2 of forests remaining in 2025. Solutions to these deforestation problems should be looked from sustainable land use management, surveying and protection of the forests in risk areas and spatially targeted self-sustainable tree planting schemes.
Resumo:
In this work, superconducting YBa2 Cu3O6+x (YBCO) thin films have been studied with the experimental focus on the anisotropy of BaZrO3 (BZO) doped YBCOthin films and the theoretical focus on modelling flux pinning by numerically solving Ginzburg- Landau equations. Also, the structural properties of undoped YBCO thin films grown on NdGaO3 (NGO) and MgO substrates were investigated. The thin film samples were made by pulsed laser ablation on single crystal substrates. The structural properties of the thin films were characterized by X-ray diffraction and atomic force microscope measurements. The superconducting properties were investigated with a magnetometer and also with transport measurements in pulsed magnetic field up to 30 T. Flux pinning was modelled by restricting the value of the order parameter inside the columnar pinning sites and then solving the Ginzburg-Landau equations numerically with the restrictions in place. The computations were done with a parallel code on a supercomputer. The YBCO thin films were seen to develop microcracks when grown on NGO or MgO substrates. The microcrack formation was connected to the structure of the YBCO thin films in both cases. Additionally, the microcracks can be avoided by careful optimization of the deposition parameters and the film thickness. The BZO doping of the YBCO thin films was seen to decrease the effective electron mass anisotropy, which was seen by fitting the Blatter scaling to the angle dependence of the upper critical field. The Ginzburg-Landau simulations were able to reproduce the measured magnetic field dependence of the critical current density for BZO doped and undoped YBCO. The simulations showed that in addition to the large density also the large size of the BZO nanorods is a key factor behind the change in the power law behaviour between BZO doped and undoped YBCO. Additionally, the Ginzburg-Landau equations were solved for type I thin films where giant vortices were seen to appear depending on the film thickness. The simulations predicted that singly quantized vortices are stable in type I films up to quite large thicknesses and that the size of the vortices increases with decreasing film thickness, in a way that is similar to the behaviour of the interaction length of Pearl vortices.
Resumo:
The objective of the thesis is to study cerium oxide thin films grown by the atomic layer deposition (ALD) for soot removal. Cerium oxide is one of the most important heterogeneous catalysts and can be used in particulate filters and sensors in a diesel exhaust pipe. Its redox/oxidation properties are a key factor in soot oxidation. Thus, the cerium oxide coating can help to keep particulate filters and sensors clean permanently. The literature part of the thesis focuses on the soot removal, introducing the origin and structure of soot, reviewing emissions standards for diesel particulate matter, and presenting methods and catalysts for soot removal. In the experimental part the optimal ALD conditions for cerium oxide were found, the structural properties of cerium oxide thin films were analyzed, and the catalytic activity of the cerium oxide for soot oxidation was investigated. Studying ALD growth conditions of cerium oxide films and determining their critical thickness range are important to maximize the catalytic performance operating at comparatively low temperature. It was found that the cerium oxide film deposited at 300 °C with 2000 ALD cycles had the highest catalytic activity. Although the activity was still moderate and did not decrease the soot oxidation temperature enough for a real-life application. The cerium oxide thin film deposited at 300 °C has a different crystal structure, surface morphology and elemental composition with a higher Ce3+ concentration compared to the films deposited at lower temperatures. The different properties of the cerium oxide thin film deposited at 300 °C increase the catalytic activity most likely due to higher surface area and addition of the oxygen vacancies.
Resumo:
Nimeketiedot nimiönkehyksissä
Resumo:
The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.