17 resultados para Harbour porpoise


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The signalling sphingolipid sphingosine-1-phosphate (S1P) is necessary for development of the immune system and vasculature and on a cellular level regulates migration, proliferation and survival. Due to these traits S1P has an important role in cancer biology. It is considered a primarily cancer-promoting factor and the enzyme which produces it, sphingosine kinase (SphK), is often over-expressed in tumours. S1P is naturally present in the blood, lymph, tissue fluids and cell cytoplasm and functions through its cell surface receptors (S1P1-5) and as an intracellular second messenger. Sphingosylphosphorylcholine (SPC) is closely related to S1P and has similar regulatory functions but has not been extensively studied. Both S1P and SPC are able to evoke either stimulatory or inhibitory effects on cancer cells depending on the context. The aim of this thesis work was to study novel regulatory targets of S1P and SPC, which mediate the effects of S1P/SPC signalling on cancer cell behaviour. The investigated targets are the transcription factor hypoxia-inducible factor 1 (HIF-1), the intermediate filament protein vimentin and components of the Hippo signalling pathway. HIF-1 has a central role in cancer biology, as it regulates a multitude of cancer-related genes and is potently activated by intratumoural hypoxia through stabilization of the regulatory subunit HIF-1α. Tumours typically harbour high HIF-1α levels and HIF-1, in turn, facilitates tumour angiogenesis and metastasis and regulates cancer cell metabolism. We found S1P to induce follicular thyroid cancer cell migration in normal oxygen conditions by increasing HIF-1α synthesis and stability and subsequently HIF-1 activity. Vimentin is a central regulator of cell motility and is also commonly over-expressed in cancers. Vimentin filaments form a cytoskeletal network in mesenchymal cells as well as epithelial cancer cells which have gone through epithelial-mesenchymal transition (EMT). Vimentin is heavily involved in cancer cell invasion and gives tumours metastatic potential. We saw both S1P and SPC induce phosphorylation of vimentin monomers and reorganization of the vimentin filament network in breast and anaplastic thyroid cancer cells. We also found vimentin to mediate the anti-migratory effect of S1P/SPC on these cells. The Hippo pathway is a novel signalling cascade which controls cancer-related processes such as cellular proliferation and survival in response to various extracellular signals. The core of the pathway consists of the transcriptional regulators YAP and TAZ, which activate predominantly cancer-promoting genes, and the tumour suppressive kinases Lats1 and Lats2 which inhibit YAP/TAZ. Increased YAP expression and activity has been reported for a wide variety of cancers. We found SPC to regulate Hippo signalling in breast cancer cells in a two-fold manner through effects on phosphorylation status, activity and/or expression of YAP and Lats2. In conclusion, this thesis reveals new details of the signalling function of S1P and SPC and regulation of the central oncogenic factors HIF-1 and vimentin as well as the novel cancer-related pathway Hippo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly dynamic systems, often considered as resilient systems, are characterised by abiotic and biotic processes under continuous and strong changes in space and time. Because of this variability, the detection of overlapping anthropogenic stress is challenging. Coastal areas harbour dynamic ecosystems in the form of open sandy beaches, which cover the vast majority of the world’s ice-free coastline. These ecosystems are currently threatened by increasing human-induced pressure, among which mass-development of opportunistic macroalgae (mainly composed of Chlorophyta, so called green tides), resulting from the eutrophication of coastal waters. The ecological impact of opportunistic macroalgal blooms (green tides, and blooms formed by other opportunistic taxa), has long been evaluated within sheltered and non-tidal ecosystems. Little is known, however, on how more dynamic ecosystems, such as open macrotidal sandy beaches, respond to such stress. This thesis assesses the effects of anthropogenic stress on the structure and the functioning of highly dynamic ecosystems using sandy beaches impacted by green tides as a study case. The thesis is based on four field studies, which analyse natural sandy sediment benthic community dynamics over several temporal (from month to multi-year) and spatial (from local to regional) scales. In this thesis, I report long-lasting responses of sandy beach benthic invertebrate communities to green tides, across thousands of kilometres and over seven years; and highlight more pronounced responses of zoobenthos living in exposed sandy beaches compared to semi-exposed sands. Within exposed sandy sediments, and across a vertical scale (from inshore to nearshore sandy habitats), I also demonstrate that the effects of the presence of algal mats on intertidal benthic invertebrate communities is more pronounced than that on subtidal benthic invertebrate assemblages, but also than on flatfish communities. Focussing on small-scale variations in the most affected faunal group (i.e. benthic invertebrates living at low shore), this thesis reveals a decrease in overall beta-diversity along a eutrophication-gradient manifested in the form of green tides, as well as the increasing importance of biological variables in explaining ecological variability of sandy beach macrobenthic assemblages along the same gradient. To illustrate the processes associated with the structural shifts observed where green tides occurred, I investigated the effects of high biomasses of opportunistic macroalgae (Ulva spp.) on the trophic structure and functioning of sandy beaches. This work reveals a progressive simplification of sandy beach food web structure and a modification of energy pathways over time, through direct and indirect effects of Ulva mats on several trophic levels. Through this thesis I demonstrate that highly dynamic systems respond differently (e.g. shift in δ13C, not in δ15N) and more subtly (e.g. no mass-mortality in benthos was found) to anthropogenic stress compared to what has been previously shown within more sheltered and non-tidal systems. Obtaining these results would not have been possible without the approach used through this work; I thus present a framework coupling field investigations with analytical approaches to describe shifts in highly variable ecosystems under human-induced stress.