20 resultados para General Dynamics Corporation. Electric Boat Division
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
Quantum computation and quantum communication are two of the most promising future applications of quantum mechanics. Since the information carriers used in both of them are essentially open quantum systems it is necessary to understand both quantum information theory and the theory of open quantum systems in order to investigate realistic implementations of such quantum technologies. In this thesis we consider the theory of open quantum systems from a quantum information theory perspective. The thesis is divided into two parts: review of the literature and original research. In the review of literature we present some important definitions and known results of open quantum systems and quantum information theory. We present the definitions of trace distance, two channel capacities and superdense coding capacity and give a reasoning why they can be used to represent the transmission efficiency of a communication channel. We also show derivations of some properties useful to link completely positive and trace preserving maps to trace distance and channel capacities. With the help of these properties we construct three measures of non-Markovianity and explain why they detect non-Markovianity. In the original research part of the thesis we study the non-Markovian dynamics in an experimentally realized quantum optical set-up. For general one-qubit dephasing channels we calculate the explicit forms of the two channel capacities and the superdense coding capacity. For the general two-qubit dephasing channel with uncorrelated local noises we calculate the explicit forms of the quantum capacity and the mutual information of a four-letter encoding. By using the dynamics in the experimental implementation as a set of specific dephasing channels we also calculate and compare the measures in one- and two-qubit dephasing channels and study the options of manipulating the environment to achieve revivals and higher transmission rates in superdense coding protocol with dephasing noise. Kvanttilaskenta ja kvanttikommunikaatio ovat kaksi puhutuimmista tulevaisuuden kvanttimekaniikan käytännön sovelluksista. Koska molemmissa näistä informaatio koodataan systeemeihin, jotka ovat oleellisesti avoimia kvanttisysteemejä, sekä kvantti-informaatioteorian, että avointen kvanttisysteemien tuntemus on välttämätöntä. Tässä tutkielmassa käsittelemme avointen kvanttisysteemien teoriaa kvantti-informaatioteorian näkökulmasta. Tutkielma on jaettu kahteen osioon: kirjallisuuskatsaukseen ja omaan tutkimukseen. Kirjallisuuskatsauksessa esitämme joitakin avointen kvanttisysteemien ja kvantti-informaatioteorian tärkeitä määritelmiä ja tunnettuja tuloksia. Esitämme jälkietäisyyden, kahden kanavakapasiteetin ja superdense coding -kapasiteetin määritelmät ja esitämme perustelun sille, miksi niitä voidaan käyttää kuvaamaan kommunikointikanavan lähetystehokkuutta. Näytämme myös todistukset kahdelle ominaisuudelle, jotka liittävät täyspositiiviset ja jäljensäilyttävät kuvaukset jälkietäisyyteen ja kanavakapasiteetteihin. Näiden ominaisuuksien avulla konstruoimme kolme epä-Markovisuusmittaa ja perustelemme, miksi ne havaitsevat dynamiikan epä-Markovisuutta. Oman tutkimuksen osiossa tutkimme epä-Markovista dynamiikkaa kokeellisesti toteutetussa kvanttioptisessa mittausjärjestelyssä. Yleisen yhden qubitin dephasing-kanavan tapauksessa laskemme molempien kanavakapasiteettien ja superdense coding -kapasiteetin eksplisiittiset muodot. Yleisen kahden qubitin korreloimattomien ympäristöjen dephasing-kanavan tapauksessa laskemme yhteisen informaation lausekkeen nelikirjaimisessa koodauksessa ja kvanttikanavakapasiteetin. Käyttämällä kokeellisen mittajärjestelyn dynamiikkoja esimerkki dephasing-kanavina me myös laskemme konstruoitujen epä-Markovisuusmittojen arvot ja vertailemme niitä yksi- ja kaksi-qubitti-dephasing-kanavissa. Lisäksi käyttäen kokeellisia esimerkkikanavia tutkimme, kuinka ympäristöä manipuloimalla superdense coding –skeemassa voidaan saada yhteinen informaatio ajoittain kasvamaan tai saavuttaa kaikenkaikkiaan korkeampi lähetystehokkuus.
Resumo:
Target of this book is to propose an approach for modelling drivetrain dynamics in order to design further a vibration control system of a hybrid bus. In this thesis two approaches are examined and compared. First model is obtained by theoretical means: drivetrain is represented as a system of rotating masses, which motion is described with differential equations. Second model is obtained using system identification method: mathematical description of the dynamic behavior of a system is formed based on measured input (torque) and output (speed) data. Then two models are compared and an optimal approach is suggested.
Resumo:
Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.
Resumo:
This thesis was conducted on assignment by a multinational chemical corporation as a case study. The purpose of this study is to find ways to improve the purchasing process for small purchases at the case company. The improvements looked after are mainly cost and time savings. Purchasing process is the process that starts from the requisition of goods or services and ends when the invoice is paid. In this thesis the purchases with value less than 1000€ are considered to be small. The theoretical framework of the thesis consists of general theoretical view of costs and performance of the purchasing process, different types of purchasing processes and a model for improving purchasing processes. The categorization to small and large purchases is the most important followed by the division between direct and indirect purchases. Also models that provide more strategic perspective for categorization were found to be useful. Auditing and managerial control are important parts of the purchasing process. When considering the transaction costs of purchasing from the costs–benefits perspective large and small purchases should not have the same processes. Purchasing cards, e-procurement and vendor managed inventory are seen as an alternative to the traditional purchasing process. The empirical data collection was done by interviewing the company employees that take part of the purchasing process in their daily work. The interviews had open-ended questions and the answers were coded and analyzed. The results consist of process description and assessment as well as suggestions for potential improvements. At the case company the basic purchasing process was similar to the traditional purchasing process that is entirely done with computers and online. For some categories there was already more sophisticated e-procurement solutions in use. To improve the current e-procurement based solutions elimination of authorization workflow and better information exchange can be seen as potential improvements for most of the case purchases. Purchasing cards and a lightweight form of vendor managed inventory can be seen as potential improvements for some categories. Implementing the changes incurs at least some cost and the benefits might be hard to measure. This thesis has revealed that the small purchases have potential for significant cost and time savings at the case company.