22 resultados para Formal feedback


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's networked systems are becoming increasingly complex and diverse. The current simulation and runtime verification techniques do not provide support for developing such systems efficiently; moreover, the reliability of the simulated/verified systems is not thoroughly ensured. To address these challenges, the use of formal techniques to reason about network system development is growing, while at the same time, the mathematical background necessary for using formal techniques is a barrier for network designers to efficiently employ them. Thus, these techniques are not vastly used for developing networked systems. The objective of this thesis is to propose formal approaches for the development of reliable networked systems, by taking efficiency into account. With respect to reliability, we propose the architectural development of correct-by-construction networked system models. With respect to efficiency, we propose reusable network architectures as well as network development. At the core of our development methodology, we employ the abstraction and refinement techniques for the development and analysis of networked systems. We evaluate our proposal by employing the proposed architectures to a pervasive class of dynamic networks, i.e., wireless sensor network architectures as well as to a pervasive class of static networks, i.e., network-on-chip architectures. The ultimate goal of our research is to put forward the idea of building libraries of pre-proved rules for the efficient modelling, development, and analysis of networked systems. We take into account both qualitative and quantitative analysis of networks via varied formal tool support, using a theorem prover the Rodin platform and a statistical model checker the SMC-Uppaal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this three phase study was to develop quality of radiotherapy care by the e-Feedback knowledge of radiotherapy -intervention (e-Re-Know). In Phase I, the purpose was to describe the quality of radiotherapy care and its deficits experienced by cancer patients. Based on the deficits in patient education in Phase II, the purpose was to describe cancer patients’ e-knowledge expectations in radiotherapy. In Phase III, the purpose was to develop and evaluate the outcomes of the e-Re-Know among breast cancer patients. The ultimate aim was to develop radiotherapy care to support patients’ empowerment with patient e-education. In Phase I (2004-2005), the descriptive design was used, and 134 radiotherapy patients evaluated their experiences by Good Nursing Care Scale for Patients (GNCS-P) in the middle of RT period. In Phase II (2006-2008), the descriptive longitudinal design was used and 100 radiotherapy patients’ e-knowledge expectations of RT were evaluated using open-ended questionnaire developed for this study before commencing first RT, in the middle of the treatment, and concluding RT period. In Phase III, firstly (2009-2010), the e-Re-Know intervention, i.e. knowledge test and feedback, was developed in terms of empowering knowledge and implemented with e-feedback approach based on literature and expert reviews. Secondly (2011-2014), the randomized controlled study was used to evaluate the e-Re-Know. Breast cancer patients randomized to either the intervention group (n=65) receiving the e-Re-Know by e-mail before commencing first RT and standard education or the control group (n=63) receiving standard education. The data were collected before commencing first RT, concluding last RT and 3 months after last RT using RT Knowledge Test, Spielberger’s State Trait Inventory (STAI) and Functional Assessment of Cancer Therapy - Breast (FACT-B) –instruments. Data were analyzed using statistical methods and content analysis. The study showed radiotherapy patients experienced quality of care high. However, there were deficits in patient education. Furthermore, radiotherapy patients’ multidimensional e-knowledge expectations through Internet covered mainly bio-physiological and functional knowledge. Thus, the e-Re-Know was developed and evaluated. The study showed when breast cancer patients’ carried out the e-Re-Know their knowledge of side effects self-care was significantly increased and quality of life (QOL) significantly improved in line with decrease in anxiety from time before radiotherapy period to three months after. In addition, the e-Re-Know has potential to have positive effects on anxiety and QOL, regardless of patient characteristics or knowledge level. The results support the theory of empowering patient education suggesting that empowerment can be supported by confirming patients’ understanding of own knowledge level. In summary, the e-Feedback knowledge of radiotherapy (e-Re-Know) intervention can be recommended in development of quality of radiotherapy care experienced by breast cancer patients. Further research is needed to assess and develop patient-centred quality of care by patient education among cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid changes in working life and competence requirements of different professions have increased interest in workplace learning. It is considered an effective way to learn and update professional skills by performing daily tasks in an authentic environment. Especially, ensuring a supply of skilled future workers is a crucial issue for firms facing tight competition and a shortage of competent employees due to the retirement of current professionals. In order to develop and make the most of workplace learning, it is important to focus on workplace learning environments and the individual characteristics of those participating in workplace learning. The literature has suggested various factors that influence adults' and professionals’ workplace learning of profession-related skills, but lacks empirical studies on contextual and individual-related factors that positively affect students' workplace learning. Workers with vocational education form a large group in modern firms. Therefore, elements of vocational students’ successful workplace learning during their studies, before starting their career paths, need to be examined. To fill this gap in the literature, this dissertation examines contributors to vocational students’ workplace learning in Finland, where students’ workplace learning is included in the vocational education and training system. The study is divided into two parts: the introduction, comprised of the overview of the relevant literature and the conclusion of the entire study, and five separate articles. Three of the articles utilize quantitative methods and two use qualitative methods to examine factors that contribute to vocational students’ workplace learning. The results show that, from the students’ perspective, attitudinal, motivational, and organizationrelated factors enhance the student’s development of professionalism during the on-the-job learning period. Specifically, the organization-related factors such as innovative climate, guidance, and interactions with seniors have a strong positive impact on the students’ perceived development of professional skills because, for example, the seniors’ guidance and provision of new viewpoints for the tasks helps the vocational students to gain autonomy at work performance. A multilevel analysis shows that of those factors enhancing workplace learning from the student perspective, innovative climate, knowledge transfer accuracy, and the students’ performance orientation were significantly related to the workplace instructors’ assessment regarding the students’ professional performance. Furthermore, support from senior colleagues and the students’ self-efficacy were both significantly associated with the formal grades measuring how well the students managed to learn necessary professional skills. In addition, the results suggest that the students’ on-the-job learning can be divided into three main phases, of which two require efforts from both the student and the on-the-job learning organization. The first phase includes the student’s application of basic professional skills, demonstration of potential in performing daily tasks, and orientation provided by the organization at the beginning of the on-the-job learning period. In the second phase, the student actively develops profession-related skills by performing daily tasks, thus learning a fluent working style while observing the seniors’ performance. The organization offers relevant tasks and follows the student’s development. The third level indicates a student who has reached the professional level described as a full occupation. The results suggest that constructing the vocational students’ successful on-the-job learning period requires feedback from seniors, opportunities to learn to manage entire work processes, self-efficacy on the part of the students, proactive behavior, and initiative in learning. The study contributes to research on workplace learning in three ways: firstly, it identifies the key individual- and organization-based factors that influence the vocational students’ successful on-the-job learning from their perspective and examines mutual relationships between these factors. Second, the study provides knowledge of how the factors related to the students’ view of successful workplace learning are associated with the workplace instructors’ perspective and the formal grades. Third, the present study finds elements needed to construct a successful on-the-job learning for the students.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.