80 resultados para Finite volume method
Resumo:
The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.
Resumo:
In this study, a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid is presented. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The present research is a part of a study on the unsteady dynamics of an organic Rankine cycle power plant and it will be a part of a dynamic process model. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen was to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties has been used, because most of the calculation time is spent in calculating the fluid properties. The boiler was divided into elements. The values of the thermodynamic properties and mass flows were calculated in the nodes that connect the elements. Dynamic behaviour was limited to the process fluid and tube wall, and the heat source was regarded as to be steady. The elements that connect the preheater to thevaporiser and the vaporiser to the superheater were treated in a special way that takes into account a flexible change from one part to the other. The model consists of the calculation of the steady state initial distribution of the variables in the nodes, and the calculation of these nodal values in a dynamic state. The initial state of the boiler was received from a steady process model that isnot a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source and the process fluid. A brief examination of the oscillation around a steady state, the so-called Ledinegg instability, was done. This examination showed that the pressure drop in the boiler is a third degree polynomial of the mass flow rate, and the stability criterion is a second degree polynomial of the enthalpy change in the preheater. The numerical examination showed that oscillations did not exist in the example case. The dynamic boiler model was analysed for linear and step changes of the entering fluid temperatures and flow rates.The problem for verifying the correctness of the achieved results was that there was no possibility o compare them with measurements. This is why the only way was to determine whether the obtained results were intuitively reasonable and the results changed logically when the boundary conditions were changed. The numerical stability was checked in a test run in which there was no change in input values. The differences compared with the initial values were so small that the effects of numerical oscillations were negligible. The heat source side tests showed that the model gives results that are logical in the directions of the changes, and the order of magnitude of the timescale of changes is also as expected. The results of the tests on the process fluid side showed that the model gives reasonable results both on the temperature changes that cause small alterations in the process state and on mass flow rate changes causing very great alterations. The test runs showed that the dynamic model has no problems in calculating cases in which temperature of the entering heat source suddenly goes below that of the tube wall or the process fluid.
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.
Resumo:
Työn päätavoitteena on ennakkoluulottomasti etsiä uudenlaista ratkaisua Mantsinen -lastausnosturin taittopuomiin ja pyrkiä löytämään kevyempi tarkoitukseen sopiva rakenne hyödyntämällä lujia teräksiä. Työ painottuu eri ratkaisuvaihtoehtojen kartoittamiseen ja niiden arviointiin elementtimenetelmää hyödyntäen. Arvioinnissa painotettiin tarkoituksen mukaisuutta ja väsymiskestävyyttä. Tutkimus suoritetaan vertailemalla vanhaa ja uutta ratkaisua keskenään. Työssä havaittiin, että ottamalla huomioon hitsattujen lujien terästen väsymisominaisuudet jo suunnittelussa, voidaan saada aikaan kevyempiä ja väsymisen kannalta kestävämpiä ratkaisuja.
Resumo:
Työssä on tutkittu kylmämuovatun suorakaideputkipalkin väsymistä metsätyökoneen puomirakenteen osana. Kylmämuovatun putkipalkin sisäpintaan syntyy käytössä puristavan ulkoisen kuormituksen vaikutuksesta putkipalkin pituussuunnassa sekä seinämän läpi kasvavia säröjä. Työn tarkoituksena on ollut selvittää rakenteen väsymiskestoikä sekä säröytymisen aiheuttavat tekijät. Työssä on verrattu kestoikälaskentaan ja särönkasvuun sovellettujen murtumismekaniikan ja elementtimenetelmän tuloksia laboratoriokokeista saatuihin tuloksiin. Toisiaan tukevien tulosten perusteella kylmämuovausprosessissa syntyneiden jäännösjännitysten osuus särön ydintymisessä, kasvussa ja sen käyttäytymisessä on ulkoisen kuorman paikallisen vaikutuksen lisänä erittäin merkittävä. Putkipalkin väsyminen onkin jäännösjännityksistä riippuva särönkasvuilmiö.
Resumo:
Työ liittyy uuden sukupolven monitelakalanterin tuotekehitysprojektiin. Työssä tutkittiin uuden monitelakalanterin tuoterakennetta, esisuunnitteluaineistoa ja mahdol- lisuuksia parametriseen 3D-suunnitteluun. Työssä ei suoritettu teknistä laskentaa. Uuden monitelakalanterin modulaarinen tuoterakenne ja esisuunnitteluaineisto pohjautuu markkinoilla olevaan OptiLoad-monitelakalanteriin. Tuoterakenteella ja esisuunnitteluaineistolla ohjataan monitelakalantereiden asiakastoimitusprojekteissa eri kokoluokkien kustannuksia, suunnittelua ja tuotantoa. Modulaarisella tuoterakenteella, jolla on selkeät mitoitusperusteet vaikutetaan oleellisesti asiakastoimitusten luotettavuuteen. Huomioimalla tuotekehitysprojektissa asiakaskohtaiset muutokset modulaarisessa tuoterakenteessa voidaan tehdä alustava esisuunnitteluaineisto. Parametrinen 3D-suunnittelu sekä lopullinen esisuunnitteluaineisto vaatii uuden monitelakalanterin rakenteiden tuotteistusta, standardointia ja elementtimenetelmään perustuvaa lujuuslaskentaa.
Resumo:
Kaikissa pyörivissä sähkömoottoreissa vääntömomentin tuoton kannalta olennainen magneettivuo kulkee staattorin ja roottorin välillä ilmavälin kautta. Ilmaväli mallinnetaan koneensuunnittelun yhteydessä tämän vuoksi tarkasti. Elementtimenetelmällä voidaan analysoida moottoreita varsin tarkasti, mutta menetelmän käyttö vie paljon aikaa ja sovittaminen muihin laskentaympäristöihin on usein hankalaa. Tämän vuoksi voidaan käyttää riittävän tarkkuuden omaavia analyyttisiä laskentamenetelmiä, joiden sovittaminen muihin ohjelmaympäristöihin on helpompaa kuin elementtimenetelmää käytettäessä. Diplomityössä kehitetään reluktanssiverkkomalli kestomagneettien aikaansaaman ilmavälivuontiheyden mallintamiseen kestomagneettitahtikoneille, joissa on pinta-asennetut kestomagneetit. Kehitetyn reluktanssiverkkomallin toimivuutta vertaillaan muihin ilmavälivuontiheyden laskentamenetelmiin.
Resumo:
Työssä tutkitaan paperiteollisuuden käyttämän taipumakompensoidun telan hydrostaattisen kuormituselementin parametrien vaikutusta tehontarpeeseen ja kuormituselementin käyttäytymistä eri parametreilla. Työssä käsitellään hydrostaattisen kuormituselementin FE-laskennassa käytetyn mallinosien rakentaminen, kokoonpano ja teoria. Lisäksi analyyttinen laskenta esitetään lyhyesti. FE-laskennassa käytetään virtaus-rakenne -vuorovaikutusanalyysiä. Laskenta suoritetaan ANSYS/Flotran ohjelmistolla (versio 5.5). Hydrostaattisen kuormituselementin tehontarpeen vähentämiseen löytyi kolme tekijää. Suurimpana yksittäisenä tekijänä on elementin kitkapinta-alan pienentäminen, jolla saavutetaan 44 % kitkatehontarpeen pieneneminen. Seuraavaksi eniten vaikuttaa kitkatehontarpeeseen kuormituselementin muotoilu, jolla saavutetaan 20 % kitkatehontarpeen pieneneminen. Kolmantena tekijänä on viskositeetin pienentäminen, jolla suurimmillaan saavutetaan 15 % kitkatehontarpeen pieneneminen.
Resumo:
Työssä on tutkittu kylmämuovattujen nelikulmaisten putkipalkkien K-liitosten mallinnusta epälineaarisella elementtimenetelmällä. Työn tärkeimpänä tavoitteena on ollut kehittää putkipalkin osien materiaalimalleja siten, että liitosten kestävyyttä voidaan tutkia laboratoriokokeiden ohella luotettavasti myös elementtimenetelmällä. Toisena tavoitteena on ollut tutkia, voidaanko putkipalkkien liitosten mitoitusohjeita turvallisesti soveltaa kylmämuovatuille putkipalkeille, joissa valmistusprosessi aiheuttaa muutoksia materiaaliominaisuuksiin, erityisesti muodonmuutoskykyyn. Työssä tehtyjen laboratoriokokeiden ja elementtianalyysien perusteella elementti-menetelmä on käyttökelpoinen työkalu putkipalkkiliitosten staattista kestävyyttä määritettäessä, kun materiaalimallit on määritetty oikein. Erityisesti liitoksen käyttö-rajatilan mukaisen kestävyyden laskennassa elementtimenetelmällä saadaan hyvin laboratoriokokeita vastaavia tuloksia. Tehdyt laboratoriokokeet osoittavat myös, että Eurocode 3:n mukaisia putkipalkkien liitosten mitoitusohjeita voi turvallisesti käyttää kylmämuovatuille putkipalkeille.
Resumo:
Tämä diplomityö on tehty Patria Vehicles Oy:n toimeksiannosta. Patria Vehicles Oy:n tuotantoon kuuluvat vaativiin maasto-olosuhteisiin soveltuvat sotilasajoneuvot sekä teleskooppimastot. Tutkimuksen tarkoituksena oli mallintaa mastoperävaunusta joustava malli, johon vaikuttavat tuulikuormat. Mallin avulla voidaan tutkia maston siirtymiä, kallistumia sekä kiertymiä. Tutkimuksessa on käytetty ADAMS-simulointiohjelmistoa sekä I-DEAS- FEM ohjelmistoa. Dynaamisten ongelmien ratkaisemiseksi on ymmärrettävä rakenteiden käyttäytymistä. Tuulikuormien mallintamisen edellytyksenä on tuulikuormien syntymisen ymmärtäminen. Tämän työn peruslähtökohtana on mallintaa kaikki maston jäykkyyteen vaikuttavat komponentit joustavina FE-menetelmän avulla. Luodaan superelementit Craig-Bamptonin ominaismuotojen superponointimenetelmällä. Nämä superelementit liitetään toisiinsa ja asetetaan niille tuulikuormat. Luodaan kosketukset puomien, sekä maan ja maston välille. Pienennetään joustavien osien ominaismuotojen määrää, jotta saataisiin nopeammat analyysit. Parametrisoidaan malli, jolloin voidaan analysoida mallilla useampia tapauksia. Verifioidaan malli varmistaaksemme sen oikeellisuuden. Taulukoidaan tulokset.
Resumo:
Työssä on tutkittu elementtimenetelmän avulla kylmämuovattujen nelikulmaisten putkipalkkien materiaalimallin kehittämistä ja putkipalkkien X-liitosten jäykkyyden ja äärikestävyyden määrittämistä. Työn tavoitteena on tutkia kylmämuovauksen vaikutuksia putkipalkkiprofiilin materiaaliominaisuuksiin materiaalikokeiden ja elementtianalyysien avulla sekä kehittää putkipalkille anisotrooppista materiaalimallia. Työssä määritettyjä materiaalimalleja on sovellettu X-liitosten elementtimalleihin, joiden käyttäytymistä on verrattu äärikestävyyskokeiden tuloksiin. Tutkimuksen perusteella Eurocode 3:n mitoitusohjeita voidaan turvallisesti soveltaa kylmämuovattujen putkipalkkien X-liitosten laskennassa. Työssä tehtyjen materiaalikokeiden ja elementtianalyysien perusteella materiaalin anisotrooppisuuden vaikutus liitoksen kestävyyteen on vähäistä, ja putkipalkin pituussuuntaista materiaalimallia voidaan soveltaa myös kehäsuuntaisille materiaaliominaisuuksille. Materiaalikokeiden simulointi osoittaa, että elementtimenetelmää voidaan käyttää materiaalimallin määrittämisen apuvälineenä.
Resumo:
Lime kiln is used as a part of the modern kraft pulp process in order to produce burnt lime from lime mud. This rotating kiln is supported by support rollers, which are traditionally supported by journal bearings. Since the continuous growth in the production of pulp mills requires larger lime kilns, the traditional bearing construction has become unreliable. The main problem especially involves the running-in phase of the bearings. In the present thesis, a new type of support roller was developed by using the systematic approach of machine design. Structural analysis was conducted on the critical parts of the selected structure by the finite element method. The operation of hydrodynamic bearings was examined by analytical methods. As a result of this work, a new type of support for rotating kilns was designed, which is more reliable and easier to service. A new support roller geometry is described, which pro¬vides for significant cost savings.
Resumo:
The objective of this study is to show that bone strains due to dynamic mechanical loading during physical activity can be analysed using the flexible multibody simulation approach. Strains within the bone tissue play a major role in bone (re)modeling. Based on previous studies, it has been shown that dynamic loading seems to be more important for bone (re)modeling than static loading. The finite element method has been used previously to assess bone strains. However, the finite element method may be limited to static analysis of bone strains due to the expensive computation required for dynamic analysis, especially for a biomechanical system consisting of several bodies. Further, in vivo implementation of strain gauges on the surfaces of bone has been used previously in order to quantify the mechanical loading environment of the skeleton. However, in vivo strain measurement requires invasive methodology, which is challenging and limited to certain regions of superficial bones only, such as the anterior surface of the tibia. In this study, an alternative numerical approach to analyzing in vivo strains, based on the flexible multibody simulation approach, is proposed. In order to investigate the reliability of the proposed approach, three 3-dimensional musculoskeletal models where the right tibia is assumed to be flexible, are used as demonstration examples. The models are employed in a forward dynamics simulation in order to predict the tibial strains during walking on a level exercise. The flexible tibial model is developed using the actual geometry of the subject’s tibia, which is obtained from 3 dimensional reconstruction of Magnetic Resonance Images. Inverse dynamics simulation based on motion capture data obtained from walking at a constant velocity is used to calculate the desired contraction trajectory for each muscle. In the forward dynamics simulation, a proportional derivative servo controller is used to calculate each muscle force required to reproduce the motion, based on the desired muscle contraction trajectory obtained from the inverse dynamics simulation. Experimental measurements are used to verify the models and check the accuracy of the models in replicating the realistic mechanical loading environment measured from the walking test. The predicted strain results by the models show consistency with literature-based in vivo strain measurements. In conclusion, the non-invasive flexible multibody simulation approach may be used as a surrogate for experimental bone strain measurement, and thus be of use in detailed strain estimation of bones in different applications. Consequently, the information obtained from the present approach might be useful in clinical applications, including optimizing implant design and devising exercises to prevent bone fragility, accelerate fracture healing and reduce osteoporotic bone loss.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.