30 resultados para FULL-THICKNESS DEFECTS
Resumo:
Due to functional requirement of a structural detail brackets with and without scallop are frequently used in bridges, decks, ships and offshore structure. Scallops are designed to serve as passage way for fluids, to reduce weld length and plate distortions. Moreover, scallops are used to avoid intersection of two or more welds for the fact that there is the presence of inventible inherent initial crack except for full penetrated weld and the formation of multi-axial stress state at the weld intersection. Welding all around the scallop corner increase the possibility of brittle fracture even for the case the bracket is not loaded by primary load. Avoiding of scallop will establish an initial crack in the corner if bracket is welded by fillet welds. If the two weld run pass had crossed, this would have given a 3D residual stress situation. Therefore the presences and absence of scallop necessitates the 3D FEA fatigue resistance of both types of brackets using effective notch stress approach ( ). FEMAP 10.1 with NX NASTRAN was used for the 3D FEA. The first and main objective of this research was to investigate and compare the fatigue resistance of brackets with and without scallop. The secondary goal was the fatigue design of scallops in case they cannot be avoided for some reason. The fatigue resistance for both types of brackets was determined based on approach using 1 mm fictitiously rounded radius based on IIW recommendation. Identical geometrical, boundary and loading conditions were used for the determination and comparison of fatigue resistance of both types of brackets using linear 3D FEA. Moreover the size effect of bracket length was also studied using 2D SHELL element FEA. In the case of brackets with scallop the flange plate weld toe at the corner of the scallop was found to exhibit the highest and made the flange plate weld toe critical for fatigue failure. Whereas weld root and weld toe at the weld intersections were the highly stressed location for brackets without scallop. Thus weld toe for brackets with scallop, and weld root and weld toe for brackets without scallop were found to be the critical area for fatigue failure. Employing identical parameters on both types of brackets, brackets without scallop had the highest except for full penetrated weld. Furthermore the fatigue resistance of brackets without scallop was highly affected by the lack of weld penetration length and it was found out that decreased as the weld penetration was increased. Despite the fact that the very presence of scallop reduces the stiffness and also same time induce stress concentration, based on the 3D FEA it is worth concluding that using scallop provided better fatigue resistance when both types of brackets were fillet welded. However brackets without scallop had the highest fatigue resistance when full penetration weld was used. This thesis also showed that weld toe for brackets with scallop was the only highly stressed area unlike brackets without scallop in which both weld toe and weld root were the critical locations for fatigue failure when different types of boundary conditions were used. Weld throat thickness, plate thickness, scallop radius, lack of weld penetration length, boundary condition and weld quality affected the fatigue resistance of both types of brackets. And as a result, bracket design procedure, especially welding quality and post weld treatment techniques significantly affect the fatigue resistance of both type of brackets.
Resumo:
En del av de intressantaste fenomenen inom dagens materialfysik uppstår ur ett intrikat samspel mellan myriader av elektroner. Högtemperatursupraledare är det mest berömda exemplet. Varken klassiska teorier eller modeller där elektronerna är oberoende av varandra kan förklara de häpnadsväckande effekterna i de starkt korrelerade elektronsystemen. I vissa kopparoxider, till exempel La2CuO4, är det känt att valenselektronerna till följd av en stark ömsesidig växelverkan lokaliseras en och en till kopparatomerna i föreningens CuO2 plan. Laddningarnas inneboende magnetiska moment—spinnet—får då en avgörande roll för materialets elektriska och magnetiska egenskaper, vilka i exemplets fall kan beskrivas med Heisenbergmodellen som är den grundläggande teoretiska modellen för mikroskopisk magnetism. Men exakt varför föreningarna kan bli supraledande då de dopas med överskottsladdningar är än så länge en obesvarad fråga. Min avhandling undersöker orenheters inverkan på Heisenbergmodellens magnetiska egenskaper—ett problem av både experimentell och teoretisk relevans. En etablerad numerisk metod har använts—en kvantmekanisk Monte Carlo teknik—för att utföra omfattande datorsimuleringar av den matematiska modellen på två dedikerade Linux datorkluster. Arbetet hör till området beräkningsfysik. De teoretiska modellerna för starkt korrelerade elektronsystem, däribland Heisenbergmodellen, är ytterst invecklade matematiskt sett och de kan inte lösas exakt. Analytiska utredningar bygger för det mesta på antaganden och förenklingar vars inverkningar på slutresultatet är ofta oklara. I det avseende kan numeriska studier vara exakta, det vill säga de kan behandla modellerna som de är. Oftast behövs bägge tillvägagångssätten. Den röda tråden i arbetet har varit att numeriskt testa vissa högaktuella analytiska förutsägelser rörande effekterna av orenheter i Heisenbergmodellen. En del av dem har vi på basen av mycket noggranna data kunnat bekräfta. Men våra resultat har också påvisat felaktigheter i de analytiska prognoserna som sedermera delvis reviderats. En del av avhandlingens numeriska upptäckter har i sin tur stimulerat till helt nya teoretiska studier.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.
Resumo:
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.
Resumo:
In this thesis, the main point of interest is the robust control of a DC/DC converter. The use of reactive components in the power conversion gives rise to dynamical effects in DC/DC converters and the dynamical effects of the converter mandates the use of active control. Active control uses measurements from the converter to correct errors present in the converter’s output. The controller needs to be able to perform in the presence of varying component values and different kinds of disturbances in loading and noises in measurements. Such a feature in control design is referred as robustness. This thesis also contains survey of general properties of DC/DC converters and their effects on control design. In this thesis, a linear robust control design method is studied. A robust controller is then designed and applied to the current control of a phase shifted full bridge converter. The experimental results are shown to match simulations.
Resumo:
Background: Interest in limb defects has grown after the thalidomide tragedy in the 1960s. As a result, congenital malformation registries, monitoring changes in birthprevalence and defect patterns, have been established in several countries. However, there are only a few true population based studies on birth prevalence of upper limb defects. The burden of hospital care among these children, specifically in terms of the number of admissions and total time spent in hospital, is also unknown. Aims and Methods: This study is based on information gathered from the Finnish Register of Congenital malformations (FRM) and the Finnish Hospital Discharge Register (FHDR). A total of 417 children born between 1993 and 2005 with an upper limb defect were gathered from the FRM. The upper limb defects were classified using the International Federation of Societies for Surgery of the Hand -classification that enables comparison with previous and future studies. Birth and live birth prevalence, sex and side distribution, frequency of associated anomalies as well as the proportion of perinatal and infant deaths according to the different subtypes were calculated. The number of hospital admissions, days spent in hospital, number and type of surgical operations were collected from the FHDR. Special features of two subgroups, radial ray defects (RRD) and constriction band syndrome (CBS), were explored. Results: Upper limb defects were observed in 417 of 753 342 consecutive births and in 392 of 750 461 live births. Birth prevalence was 5.5 per 10 000 births and 5.2 per 10 000 live births. Multiple anomalies or a known syndrome was found in 250 cases (60%). Perinatal mortality was 139 per 1000 births and infant mortality 135 per 1000 live births (overall Finnish perinatal mortality <5 per 1000 births and infant mortality 3.7 per 1000 live births). Altogether, 138 infants had RRD and 120 (87%) of these had either a known syndrome or multiple major anomalies. The proportion of perinatal deaths in RRD group was 29% (40/138) and infant deaths 35% (43/123). Fifty-one children had CBS in upper limbs. Fifteen of these (29%) had other major anomalies associated with constriction rings. The number of hospital admissions per year of children with congenital upper limb defects was 11-fold and the time spent in hospital 13-fold as compared with the general paediatric population. Conclusions: Birth prevalence of congenital upper limb defects was 5.5 per 10 000 births and 5.2 per 10 000 live births. RRD was especially associated with other major anomalies and high mortality. Nearly one third of the children with CBS also had other major anomalies suggesting different aetiologies inside the group. The annual burden of hospital care of children with congenital upper limb defects was at least 11-fold as compared with the general paediatric population.
Resumo:
The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.
Resumo:
Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.
Resumo:
A cranial bone defect may result after an operative treatment of trauma, infection, vascular insult, or tumor. New biomaterials for cranial bone defect reconstructions are needed for example to mimic the biomechanical properties and structure of cranial bone. A novel glass fiber-reinforced composite implant with bioactive glass particulates (FRC–BG, fiber-reinforced composite–bioactive glass) has osteointegrative potential in a preclinical setting. The aim of the first and second study was to investigate the functionality of a FRC–BG implant in the reconstruction of cranial bone defects. During the years 2007–2014, a prospective clinical trial was conducted in two tertiary level academic institutions (Turku University Hospital and Oulu University Hospital) to evaluate the treatment outcome in 35 patients that underwent a FRC–BG cranioplasty. The treatment outcome was good both in adult and pediatric patients. A number of conventional complications related to cranioplasty were observed. In the third study, a retrospective outcome evaluation of 100 cranioplasty procedures performed in Turku University Hospital between years 2002–2012 was conducted. The experimental fourth study was conducted to test the load-bearing capacity and fracture behavior of FRC–BG implants under static loading. The interconnective bars in the implant structure markedly increased the load-bearing capacity of the implant. A loading test did not demonstrate any protrusions of glass fibers or fiber cut. The fracture type was buckling and delamination. In this study, a postoperative complication requiring a reoperation or removal of the cranioplasty material was observed in one out of five cranioplasty patients. The treatment outcomes of cranioplasty performed with different synthetic materials did not show significant difference when compared with autograft. The FRC–BG implant was demonstrated to be safe and biocompatible biomaterial for large cranial bone defect reconstructions in adult and pediatric patients.
Resumo:
In this work, Sr2FeMoO6 (SFMO) thin films were studied with the main focus on their magnetic and magneto-transport properties. The fabrication process of pulsed laser deposited SFMO films was first optimized. Then the effects of strain, film thickness and substrate were thoroughly investigated. In addition to these external factors, the effect of intrinsic defects on the magnetic properties of SFMO were also clarified. Secondly, the magnetoresistivity mechanims of SFMO films were studied and a semiempirical model of the temperature dependence of resistivity was introduced. The films were grown on single crystal substrates using a ceramic target made with sol-gel method. The structural characterization of the films were carried out with X-ray diffraction, atomic force microscopy, transmission electron microscopy and high kinetic energy photoelectron spectroscopy. The magnetic properties were measured with SQUID magnetometer and the magneto-transport properties by magnetometer with a resistivity option. SFMO films with the best combination of structural and magnetic properties were grown in Ar atmosphere at 1050 °C . Their magnetic properties could not be improved by the ex situ post-annealing treatments aside from the treatments in ultra-high vacuum conditions. The optimal film thickness was found to be around 150 nm and only small improvement in the magnetic properties with decreasing strain was observed. Instead, the magnetic properties were observed to be highly dependent on the choice of the substrate due to the lattice mismatch induced defects, which are best avoided by using the SrTiO3 substrate. The large difference in the Curie temperature and the saturation magnetization between the SFMO thin film and polycrystalline bulk samples was connected to the antisite disorder and oxygen vacancies. Thus, the Curie temperature of SFMO thin films could be improved by increasing the amount of oxygen vacancies for example with ultra-high vacuum treatments or improving the B-site ordering by further optimization of the deposition parameters. The magneto-transport properties of SFMO thin films do not follow any conventional models, but the temperature dependence of resistivity was succesfully described with a model of two spin channel system. Also, evidences that the resistivity-temperature behaviour of SFMO thin films is dominated by the structural defects, which reduce the band gap in the majority spin band were found. Moreover, the magnetic field response of the resistivity in SFMO thin films were found to be superposition of different mechanisms that seems to be related to the structural changes in the film.
Resumo:
The aim of this thesis was to examine efficiency of freeze crystallization and eutectic freeze crystallization in purification of wastewater by imitating natural freezing. In addition, a mathematic model based on heat transfer to determine ice thickness and ice growth rate was examined. Also, the amount of sodium sulfate crystallized at the eutectic point was under investigation. In literature part, advantages and applications of the freeze crystallization are discussed, and possibility to apply it in Northern hemisphere winter weather conditions is under study. Furthermore, main sources of sodium sulfate from Finnish industries are described. The experiments were carried out in modified chest freezer, where a fan was placed in order to obtain laminar air flow inside. Picolog PT-104 data logger was used to monitor temperature changes in the salt-water solution, and constant temperature was maintained in the crystallizer with Lauda RP 850 thermostat. The impurity of formed ice layer was determined by weighing ice samples after experiment and again after 24 hours drying to full dryness in oven. Volume of salt-water solution was also measured after experiment. The highest purity of formed ice layer was obtained with small temperature difference and with long freezing time. On the other hand, the amount of crystallized sodium sulfate was its greatest with long freezing time and higher temperature difference. The results obtained by the mathematic model and empirical results did not differ significantly in most of the experiments. However, the difference increased when salt-water mixture reached its eutectic point, leading to simultaneous ice and salt crystallization. Eutectic point was reached only with the highest salt concentration with one exception. In these cases, calculated values were in many cases greater than the experimental ones. In winter weather conditions freeze crystallization is cost-effective wastewater treatment method and rather simple. Nonetheless, the efficiency and separation rate are strongly depended on ambient temperature and its changes
Resumo:
The aim of this Master’s thesis is to find a method for classifying spare part criticality in the case company. Several approaches exist for criticality classification of spare parts. The practical problem in this thesis is the lack of a generic analysis method for classifying spare parts of proprietary equipment of the case company. In order to find a classification method, a literature review of various analysis methods is required. The requirements of the case company also have to be recognized. This is achieved by consulting professionals in the company. The literature review states that the analytic hierarchy process (AHP) combined with decision tree models is a common method for classifying spare parts in academic literature. Most of the literature discusses spare part criticality in stock holding perspective. This is relevant perspective also for a customer orientated original equipment manufacturer (OEM), as the case company. A decision tree model is developed for classifying spare parts. The decision tree classifies spare parts into five criticality classes according to five criteria. The criteria are: safety risk, availability risk, functional criticality, predictability of failure and probability of failure. The criticality classes describe the level of criticality from non-critical to highly critical. The method is verified for classifying spare parts of a full deposit stripping machine. The classification can be utilized as a generic model for recognizing critical spare parts of other similar equipment, according to which spare part recommendations can be created. Purchase price of an item and equipment criticality were found to have no effect on spare part criticality in this context. Decision tree is recognized as the most suitable method for classifying spare part criticality in the company.
Resumo:
In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.