18 resultados para Equations, Quadratic.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kombinatorisk optimering handlar om att hitta en bra eller rent av den bästa möjliga lösningen från ett känt antal lösningar eller kombinationer. Ofta är antalet lösningar så enormt att en genomgång av alla olika lösningar inte är möjlig. En av huvudorsakerna till att det forskas inom kombinatorisk optimering är att liknande frågeställningar eller problem uppkommer inom så många olika områden. Påståendet stämmer speciellt bra för kvadratiska tilldelningsproblem(eng. Quadratic Assignment Problem). Sådana problem uppstår då man försöker beskriva en stor mängd tillämpade frågeställningar. Vilken gate skall väljas för flygen på större flygplatser för att minimera den totala väg människorna behöver gå och bagaget förflyttas? Var skall olika avdelningar på en fabrik placeras för att minimera materialförflyttningar mellan avdelningarna? Hur ser ett optimalt tangentbord ut för olika språk? Var skall komponenterna placeras på ett kretskort? De här är alla frågor som kan besvaras genom att lösa kvadratiska tilldelningsproblem. Kvadratiska tilldelningsproblem är dock mycket svåra att lösa. Det beror på att problemet i den standardform det matematiskt formuleras i huvudsak består av produkter av binära variabler. I denna avhandling har problemet omformulerats till en linjär diskret form som innehåller färre variabler. Med omformuleringen har bland annat flera tidigare olösta kvadratiska tilldelningsproblem kunnat lösas till globalt optimum, den bästa möjliga lösningen, för första gången någonsin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we examine four well-known and traditional concepts of combinatorics on words. However the contexts in which these topics are treated are not the traditional ones. More precisely, the question of avoidability is asked, for example, in terms of k-abelian squares. Two words are said to be k-abelian equivalent if they have the same number of occurrences of each factor up to length k. Consequently, k-abelian equivalence can be seen as a sharpening of abelian equivalence. This fairly new concept is discussed broader than the other topics of this thesis. The second main subject concerns the defect property. The defect theorem is a well-known result for words. We will analyze the property, for example, among the sets of 2-dimensional words, i.e., polyominoes composed of labelled unit squares. From the defect effect we move to equations. We will use a special way to define a product operation for words and then solve a few basic equations over constructed partial semigroup. We will also consider the satisfiability question and the compactness property with respect to this kind of equations. The final topic of the thesis deals with palindromes. Some finite words, including all binary words, are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. The famous Thue-Morse word has the property that for each positive integer n, there exists a factor which cannot be generated by fewer than n palindromes. We prove that in general, every non ultimately periodic word contains a factor which cannot be generated by fewer than 3 palindromes, and we obtain a classification of those binary words each of whose factors are generated by at most 3 palindromes. Surprisingly these words are related to another much studied set of words, Sturmian words.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduces an extension of Chomsky’s context-free grammars equipped with operators for referring to left and right contexts of strings.The new model is called grammar with contexts. The semantics of these grammars are given in two equivalent ways — by language equations and by logical deduction, where a grammar is understood as a logic for the recursive definition of syntax. The motivation for grammars with contexts comes from an extensive example that completely defines the syntax and static semantics of a simple typed programming language. Grammars with contexts maintain most important practical properties of context-free grammars, including a variant of the Chomsky normal form. For grammars with one-sided contexts (that is, either left or right), there is a cubic-time tabular parsing algorithm, applicable to an arbitrary grammar. The time complexity of this algorithm can be improved to quadratic,provided that the grammar is unambiguous, that is, it only allows one parsefor every string it defines. A tabular parsing algorithm for grammars withtwo-sided contexts has fourth power time complexity. For these grammarsthere is a recognition algorithm that uses a linear amount of space. For certain subclasses of grammars with contexts there are low-degree polynomial parsing algorithms. One of them is an extension of the classical recursive descent for context-free grammars; the version for grammars with contexts still works in linear time like its prototype. Another algorithm, with time complexity varying from linear to cubic depending on the particular grammar, adapts deterministic LR parsing to the new model. If all context operators in a grammar define regular languages, then such a grammar can be transformed to an equivalent grammar without context operators at all. This allows one to represent the syntax of languages in a more succinct way by utilizing context specifications. Linear grammars with contexts turned out to be non-trivial already over a one-letter alphabet. This fact leads to some undecidability results for this family of grammars