23 resultados para English teaching theory and practice: Australian Curriculum
Resumo:
Min avhandling behandlar hur oordnade material leder elektrisk ström. Bland materialen som studeras finns ledande polymerer, d.v.s. plaster som leder ström, och mer allmänt organiska halvledare. Av de här materialen har man kunnat bygga elektroniska komponenter, och man hoppas på att kunna trycka hela kretsar av organiska material. För de här tillämpningarna är det viktigt att förstå hur materialen själva leder elektrisk ström. Termen oordnade material syftar på material som saknar kristallstruktur. Oordningen gör att elektronernas tillstånd blir lokaliserade i rummet, så att en elektron i ett visst tillstånd är begränsad t.ex. till en molekyl eller ett segment av en polymer. Det här kan jämföras med kristallina material, där ett elektrontillstånd är utspritt över hela kristallen (men i stället har en väldefinierad rörelsemängd). Elektronerna (eller hålen) i det oordnade materialet kan röra sig genom att tunnelera mellan de lokaliserade tillstånden. Utgående från egenskaperna för den här tunneleringsprocessen, kan man bestämma transportegenskaperna för hela materialet. Det här är utgångspunkten för den så kallade hopptransportmodellen, som jag har använt mig av. Hopptransportmodellen innehåller flera drastiska förenklingar. Till exempel betraktas elektrontillstånden som punktformiga, så att tunneleringssannolikheten mellan två tillstånd endast beror på avståndet mellan dem, och inte på deras relativa orientation. En annan förenkling är att behandla det kvantmekaniska tunneleringsproblemet som en klassisk process, en slumpvandring. Trots de här grova approximationerna visar hopptransportmodellen ändå många av de fenomen som uppträder i de verkliga materialen som man vill modellera. Man kan kanske säga att hopptransportmodellen är den enklaste modell för oordnade material som fortfarande är intressant att studera. Man har inte hittat exakta analytiska lösningar för hopptransportmodellen, därför använder man approximationer och numeriska metoder, ofta i form av datorberäkningar. Vi har använt både analytiska metoder och numeriska beräkningar för att studera olika aspekter av hopptransportmodellen. En viktig del av artiklarna som min avhandling baserar sig på är att jämföra analytiska och numeriska resultat. Min andel av arbetet har främst varit att utveckla de numeriska metoderna och applicera dem på hopptransportmodellen. Därför fokuserar jag på den här delen av arbetet i avhandlingens introduktionsdel. Ett sätt att studera hopptransportmodellen numeriskt är att direkt utföra en slumpvandringsprocess med ett datorprogram. Genom att föra statisik över slumpvandringen kan man beräkna olika transportegenskaper i modellen. Det här är en så kallad Monte Carlo-metod, eftersom själva beräkningen är en slumpmässig process. I stället för att följa rörelsebanan för enskilda elektroner, kan man beräkna sannolikheten vid jämvikt för att hitta en elektron i olika tillstånd. Man ställer upp ett system av ekvationer, som relaterar sannolikheterna för att hitta elektronen i olika tillstånd i systemet med flödet, strömmen, mellan de olika tillstånden. Genom att lösa ekvationssystemet fås sannolikhetsfördelningen för elektronerna. Från sannolikhetsfördelningen kan sedan strömmen och materialets transportegenskaper beräknas. En aspekt av hopptransportmodellen som vi studerat är elektronernas diffusion, d.v.s. deras slumpmässiga rörelse. Om man betraktar en samling elektroner, så sprider den med tiden ut sig över ett större område. Det är känt att diffusionshastigheten beror av elfältet, så att elektronerna sprider sig fortare om de påverkas av ett elektriskt fält. Vi har undersökt den här processen, och visat att beteendet är väldigt olika i endimensionella system, jämfört med två- och tredimensionella. I två och tre dimensioner beror diffusionskoefficienten kvadratiskt av elfältet, medan beroendet i en dimension är linjärt. En annan aspekt vi studerat är negativ differentiell konduktivitet, d.v.s. att strömmen i ett material minskar då man ökar spänningen över det. Eftersom det här fenomenet har uppmätts i organiska minnesceller, ville vi undersöka om fenomenet också kan uppstå i hopptransportmodellen. Det visade sig att det i modellen finns två olika mekanismer som kan ge upphov till negativ differentiell konduktivitet. Dels kan elektronerna fastna i fällor, återvändsgränder i systemet, som är sådana att det är svårare att ta sig ur dem då elfältet är stort. Då kan elektronernas medelhastighet och därmed strömmen i materialet minska med ökande elfält. Elektrisk växelverkan mellan elektronerna kan också leda till samma beteende, genom en så kallad coulombblockad. En coulombblockad kan uppstå om antalet ledningselektroner i materialet ökar med ökande spänning. Elektronerna repellerar varandra och ett större antal elektroner kan leda till att transporten blir långsammare, d.v.s. att strömmen minskar.
Resumo:
Contemporary organisations have to embrace the notion of doing ‘more with less’. This challenges knowledge production within companies and public organisations, forcing them to reorganise their structures and rethink what knowledge production actually means in the context of innovation and how knowledge is actually produced among various professional groups within the organisation in their everyday actions. Innovations are vital for organisational survival, and ‘ordinary’ employees and customers are central but too-often ignored producers of knowledge for contemporary organisations. Broader levels of participation and reflexive practices are needed. This dissertation discusses the missing links between innovation research conducted in the context of industrial management, arts, and culture; applied drama and theatre practices (specifically post-Boalian approaches); and learning – especially organising reflection – in organisational settings. This dissertation (1) explores and extends the role of research-based theatre to organising reflection and reflexive practices in the context of practice-based innovation, (2) develops a reflexive model of RBT for investigating and developing practice-based organisational process innovations in order to contribute to the development of a tool for innovation management and analysis, and (3) operationalises this model within private- and publicsector organisations. The proposed novel reflexive model of research-based theatre for investigating and developing practice-based organisational process innovations extends existing methods and offers a different way of organising reflection and reflexive practices in the context of general innovation management. The model was developed through five participatory action research processes conducted in four different organisations. The results provide learning steps – a reflection path – for understanding complex organisational life, people, and relations amid renewal and change actions. The proposed model provides a new approach to organising and cultivating reflexivity in practice-based innovation activities via research-based theatre. The results can be utilised as a guideline when processing practice-based innovation within private or public organisations. The model helps innovation managers to construct, together with their employees, temporary communities where they can learn together through reflecting on their own and each others’ experiences and to break down assumptions related to their own perspectives. The results include recommendations for practical development steps applicable in various organisations with regard to (i) application of research-based theatre and (ii) related general innovation management. The dissertation thus contributes to the development of novel learning approaches in knowledge production. Keywords: practice-based innovation, research-based theatre, learning, reflection, mode 2b knowledge production
Resumo:
The purpose of this doctoral thesis is to widen and develop our theoretical frameworks for discussion and analyses of feedback practices in management accounting, particularly shedding light on its formal and informal aspects. The concept of feedback in management accounting has conventionally been analyzed within cybernetic control theory, in which feedback flows as a diagnostic or comparative loop between measurable outputs and pre-set goals (see e.g. Flamholtz et al. 1985; Flamholtz 1996, 1983), i.e. as a formal feedback loop. However, the everyday feedback practices in organizations are combinations of formal and informal elements. In addition to technique-driven feedback approaches (like budgets, measurement, and reward systems) we could also categorize social feedback practices that managers see relevant and effective in the pursuit of organizational control. While cybernetics or control theories successfully capture rational and measured aspects of organizational performance and offer a broad organizational context for the analysis, many individual and informal aspects remain vague and isolated. In order to discuss and make sense of the heterogeneous field of interpretations of formal and informal feedback, both in theory and practice, dichotomous approaches seem to be insufficient. Therefore, I suggest an analytical framework of formal and informal feedback with three dimensions (3D’s): source, time, and rule. Based on an abductive analysis of the theoretical and empirical findings from an interpretive case study around a business unit called Division Steelco, the 3Dframework and formal and informal feedback practices are further elaborated vis-á-vis the four thematic layers in the organizational control model by Flamholtz et al. (1985; Flamholtz 1996, 1983): core control system, organizational structure, organizational culture, and external environment. Various personal and cultural meanings given to the formal and informal feedback practices (“feedback as something”) create multidimensional interpretative contexts. Multidimensional frameworks aim to capture and better understand both the variety of interpretations and their implications to the functionality of feedback practices, important in interpretive research.
Resumo:
This book was created as postgraduate lecture notes for Lappeenranta University of Technology's special course of steam power plants. But as with anything ever written the ideas shown have nurtured for a long time. Parts of these chapters have appeared elsewhere as individual papers or work documents. One of the most helpful episodes have been presentations and discussions during Pohto Operator training seminars. Input from those sessions can be seen in chapter firing. You who run recovery boilers, I salute you. The purpose of this text is to give the reader an overview of recovery boiler operation. Most parts of the recovery boiler operation are common to boilers burning other fuels. The furnace operation differs significantly from operation of other boiler furnaces. Oxygen rich atmosphere is needed to burn fuel efficiently. But the main function of recovery boiler is to reduce spent cooking chemicals. Reduction reactions happen best in oxygen deficient atmosphere. This dual, conflicting nature of recovery furnace makes understanding it so challenging. To understand the processes happening in the recovery furnace one must try to understand the detailed processes that might occur and their limitations. Therefore chapters on materials, corrosion and fouling have been added.
Resumo:
The investments have always been considered as an essential backbone and so-called ‘locomotive’ for the competitive economies. However, in various countries, the state has been put under tight budget constraints for the investments in capital intensive projects. In response to this situation, the cooperation between public and private sector has grown based on public-private mechanism. The promotion of favorable arrangement for collaboration between public and private sectors for the provision of policies, services, and infrastructure in Russia can help to address the problems of dry ports development that neither municipalities nor the private sector can solve alone. Especially, the stimulation of public-private collaboration is significant under the exposure to externalities that affect the magnitude of the risks during all phases of project realization. In these circumstances, the risk in the projects also is becoming increasingly a part of joint research and risk management practice, which is viewed as a key approach, aiming to take active actions on existing global and specific factors of uncertainties. Meanwhile, a relatively little progress has been made on the inclusion of the resilience aspects into the planning process of a dry ports construction that would instruct the capacity planner, on how to mitigate the occurrence of disruptions that may lead to million dollars of losses due to the deviation of the future cash flows from the expected financial flows on the project. The current experience shows that the existing methodological base is developed fragmentary within separate steps of supply chain risk management (SCRM) processes: risk identification, risk evaluation, risk mitigation, risk monitoring and control phases. The lack of the systematic approach hinders the solution of the problem of risk management processes of dry port implementation. Therefore, management of various risks during the investments phases of dry port projects still presents a considerable challenge from the practical and theoretical points of view. In this regard, the given research became a logical continuation of fundamental research, existing in the financial models and theories (e.g., capital asset pricing model and real option theory), as well as provided a complementation for the portfolio theory. The goal of the current study is in the design of methods and models for the facilitation of dry port implementation through the mechanism of public-private partnership on the national market that implies the necessity to mitigate, first and foremost, the shortage of the investments and consequences of risks. The problem of the research was formulated on the ground of the identified contradictions. They rose as a continuation of the trade-off between the opportunities that the investors can gain from the development of terminal business in Russia (i.e. dry port implementation) and risks. As a rule, the higher the investment risk, the greater should be their expected return. However, investors have a different tolerance for the risks. That is why it would be advisable to find an optimum investment. In the given study, the optimum relates to the search for the efficient portfolio, which can provide satisfaction to the investor, depending on its degree of risk aversion. There are many theories and methods in finance, concerning investment choices. Nevertheless, the appropriateness and effectiveness of particular methods should be considered with the allowance of the specifics of the investment projects. For example, the investments in dry ports imply not only the lump sum of financial inflows, but also the long-term payback periods. As a result, capital intensity and longevity of their construction determine the necessity from investors to ensure the return on investment (profitability), along with the rapid return on investment (liquidity), without precluding the fact that the stochastic nature of the project environment is hardly described by the formula-based approach. The current theoretical base for the economic appraisals of the dry port projects more often perceives net present value (NPV) as a technique superior to other decision-making criteria. For example, the portfolio theory, which considers different risk preference of an investor and structures of utility, defines net present value as a better criterion of project appraisal than discounted payback period (DPP). Meanwhile, in business practice, the DPP is more popular. Knowing that the NPV is based on the assumptions of certainty of project life, it cannot be an accurate appraisal approach alone to determine whether or not the project should be accepted for the approval in the environment that is not without of uncertainties. In order to reflect the period or the project’s useful life that is exposed to risks due to changes in political, operational, and financial factors, the second capital budgeting criterion – discounted payback period is profoundly important, particularly for the Russian environment. Those statements represent contradictions that exist in the theory and practice of the applied science. Therefore, it would be desirable to relax the assumptions of portfolio theory and regard DPP as not fewer relevant appraisal approach for the assessment of the investment and risk measure. At the same time, the rationality of the use of both project performance criteria depends on the methods and models, with the help of which these appraisal approaches are calculated in feasibility studies. The deterministic methods cannot ensure the required precision of the results, while the stochastic models guarantee the sufficient level of the accuracy and reliability of the obtained results, providing that the risks are properly identified, evaluated, and mitigated. Otherwise, the project performance indicators may not be confirmed during the phase of project realization. For instance, the economic and political instability can result in the undoing of hard-earned gains, leading to the need for the attraction of the additional finances for the project. The sources of the alternative investments, as well as supportive mitigation strategies, can be studied during the initial phases of project development. During this period, the effectiveness of the investments undertakings can also be improved by the inclusion of the various investors, e.g. Russian Railways’ enterprises and other private companies in the dry port projects. However, the evaluation of the effectiveness of the participation of different investors in the project lack the methods and models that would permit doing the particular feasibility study, foreseeing the quantitative characteristics of risks and their mitigation strategies, which can meet the tolerance of the investors to the risks. For this reason, the research proposes a combination of Monte Carlo method, discounted cash flow technique, the theory of real options, and portfolio theory via a system dynamics simulation approach. The use of this methodology allows for comprehensive risk management process of dry port development to cover all aspects of risk identification, risk evaluation, risk mitigation, risk monitoring, and control phases. A designed system dynamics model can be recommended for the decision-makers on the dry port projects that are financed via a public-private partnership. It permits investors to make a decision appraisal based on random variables of net present value and discounted payback period, depending on different risks factors, e.g. revenue risks, land acquisition risks, traffic volume risks, construction hazards, and political risks. In this case, the statistical mean is used for the explication of the expected value of the DPP and NPV; the standard deviation is proposed as a characteristic of risks, while the elasticity coefficient is applied for rating of risks. Additionally, the risk of failure of project investments and guaranteed recoupment of capital investment can be considered with the help of the model. On the whole, the application of these modern methods of simulation creates preconditions for the controlling of the process of dry port development, i.e. making managerial changes and identifying the most stable parameters that contribute to the optimal alternative scenarios of the project realization in the uncertain environment. System dynamics model allows analyzing the interactions in the most complex mechanism of risk management process of the dry ports development and making proposals for the improvement of the effectiveness of the investments via an estimation of different risk management strategies. For the comparison and ranking of these alternatives in their order of preference to the investor, the proposed indicators of the efficiency of the investments, concerning the NPV, DPP, and coefficient of variation, can be used. Thus, rational investors, who averse to taking increased risks unless they are compensated by the commensurate increase in the expected utility of a risky prospect of dry port development, can be guided by the deduced marginal utility of investments. It is computed on the ground of the results from the system dynamics model. In conclusion, the outlined theoretical and practical implications for the management of risks, which are the key characteristics of public-private partnerships, can help analysts and planning managers in budget decision-making, substantially alleviating the effect from various risks and avoiding unnecessary cost overruns in dry port projects.