30 resultados para Energy supply


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finland has large forest fuel resources. However, the use of forest fuels for energy production has been low, except for small-scale use in heating. According to national action plans and programs related to wood energy promotion, the utilization of such resources will be multiplied over the next few years. The most significant part of this growth will be based on the utilization of forest fuels, produced from logging residues of regeneration fellings, in industrial and municipal power and heating plants. Availability of logging residues was analyzed by means of resource and demand approaches in order to identify the most suitable regions with focus on increasing the forest fuel usage. The analysis included availability and supply cost comparisons between power plant sites and resource allocation in a least cost manner, and between a predefined power plant structure under demand and supply constraints. Spatial analysis of worksite factors and regional geographies were carried out using the GIS-model environment via geoprocessing and cartographic modeling tools. According to the results of analyses, the cost competitiveness of forest fuel supply should be improved in order to achieve the designed objectives in the near future. Availability and supply costs of forest fuels varied spatially and were very sensitive to worksite factors and transport distances. According to the site-specific analysis the supply potential between differentlocations can be multifold. However, due to technical and economical reasons ofthe fuel supply and dense power plant infrastructure, the supply potential is limited at plant level. Therefore, the potential and supply cost calculations aredepending on site-specific matters, where regional characteristics of resourcesand infrastructure should be taken into consideration, for example by using a GIS-modeling approach constructed in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considered the current situation of biofuels markets in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 21% of the total energy consumption in 2006. Almost 80% of the wood-based energy is recovered from industrial by-products and residues. Finland has commitment itself to maintaining its greenhouse gas emissions at the 1990 level, at the highest, during the period 2008–2012. The energy and climate policy carried out in recent years has been based on the National Energy and Climate introduced in 2005. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In 2007, the government started to prepare a new long-term (up to the year 2050) climate and energy strategy that will meet EU’s new targets for the reduction of green house gas emissions and the promotion of renewable energy sources. The new strategy will be introduced during 2008. The international biofuels trade has a substantial importance for the utilisation of bioenergy in Finland. In 2006, the total international trading of solid and liquid biofuels was approximately 64 PJ of which import was 61 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2006, as much as 24% of wood energy was based on foreignorigin wood. Wood pellets and tall oil form the majority of export streams of biofuels. The indirect import of wood fuels increased almost 10% in 2004–2006, while the direct trade of solid and liquid biofuels has been almost constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the master's thesis is a detailed research of the technical wind energy potential in Russian Federation: the distribution of the potential all over the territory of the country and the possibility of the application of the potential for power supply of various objects. The main attention of the thesis is devoted to the assessment of wind energy resources (potential) of Russian Federation, both for the territory of country in whole and for every region. Theoretical basic wind energy concepts and the scheme of transformation of kinetic energy of a wind into electric energy by modern wind turbines are given in the work. Also the costs of energy, stimuli of development of wind-engineering and obstacles which impact the industry development are analyzed. The review of existent and projected wind power plants in Russia is carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of bioenergy on the basis of wood fuels has received considerable attention in the last decades. The combination of large forest resources and reliance on fossil fuels makes the issue of wood chips usage in Russia an actual topic for the analysis. The main objective of this study is to disclose the current state and perspectives for the production of wood chips and their usage as a source of energy in the North-West of Russia. The study utilizes an integrated approach to explore the market of wood chips on the basis of comprehensive analysis of documentation and expert opinions. The analysis of wood chips market was performed for eight regions of the North-West district of Russia within two major dimensions: its current state and perspectives in the nearest five years. The results of the study show a comprehensive picture of the wood chips market, including the potential for wood chips production, the specific features of production and consumption and the perspectives for the market development within the regions of the North-West district of Russia. The study demonstrated that the market of wood chips is underdeveloped in the North-West of Russia. The findings of the work may be used by forest companies for the strategic planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report presents the results of the commercialization project called the Container logistic services for forest bioenergy. The project promotes new business that is emerging around overall container logistic services in the bioenergy sector. The results assess the European markets of the container logistics for biomass, enablers for new business creation and required service bundles for the concept. We also demonstrate the customer value of the container logistic services for different market segments. The concept analysis is based on concept mapping, quality function deployment process (QFD) and business network analysis. The business network analysis assesses key shareholders and their mutual connections. The performance of the roadside chipping chain is analysed by the logistic cost simulation, RFID system demonstration and freezing tests. The EU has set the renewable energy target to 20 % in 2020 of which Biomass could account for two-thirds. In the Europe, the production of wood fuels was 132.9 million solid-m3 in 2012 and production of wood chips and particles was 69.0 million solidm3. The wood-based chips and particle flows are suitable for container transportation providing market of 180.6 million loose- m3 which mean 4.5 million container loads per year. The intermodal logistics of trucks and trains are promising for the composite containers because the biomass does not freeze onto the inner surfaces in the unloading situations. The overall service concept includes several packages: container rental, container maintenance, terminal services, RFID-tracking service, and simulation and ERP-integration service. The container rental and maintenance would provide transportation entrepreneurs a way to increase the capacity without high investment costs. The RFID-concept would lead to better work planning improving profitability throughout the logistic chain and simulation supports fuel supply optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently widely accepted consensus is that greenhouse gas emissions produced by the mankind have to be reduced in order to avoid further global warming. The European Union has set a variety of CO2 reduction and renewable generation targets for its member states. The current energy system in the Nordic countries is one of the most carbon free in the world, but the aim is to achieve a fully carbon neutral energy system. The objective of this thesis is to consider the role of nuclear power in the future energy system. Nuclear power is a low carbon energy technology because it produces virtually no air pollutants during operation. In this respect, nuclear power is suitable for a carbon free energy system. In this master's thesis, the basic characteristics of nuclear power are presented and compared to fossil fuelled and renewable generation. Nordic energy systems and different scenarios in 2050 are modelled. Using models and information about the basic characteristics of nuclear power, an opinion is formed about its role in the future energy system in Nordic countries. The model shows that it is possible to form a carbon free Nordic energy system. Nordic countries benefit from large hydropower capacity which helps to offset fluctuating nature of wind power. Biomass fuelled generation and nuclear power provide stable and predictable electricity throughout the year. Nuclear power offers better energy security and security of supply than fossil fuelled generation and it is competitive with other low carbon technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä diplomityössä tarkasteltiin Nissan Leaf -sähköauton käytetyn litiumakun soveltuvuutta UPS-varavirtalaitteen energialähteeksi. Kun akku on heikentynyt niin ettei sen kapasiteetti enää ole riittävä autokäyttöön, sitä voidaan kuitenkin vielä hyödyntää muissa sovelluksissa, kuten UPS-laitteessa. Työ sai alkunsa osana GreenDataNet-projektia, jossa pyritään kehittämään datakeskuksiin ympäristöä vähemmän kuormittavia ratkaisuja käyttämällä uusiutuvia energialähteitä, akkujen uusiokäytöllä, sekä energianhallinnan optimoinnilla. Työssä käytiin läpi akun ja sen ohjausjärjestelmän ominaisuuksia, kerrottiin UPS:in ohjelmistoon tehdyistä muutoksista sekä esitettiin testitulokset. Lopputuloksena todettiin akun sopivan muuten hyvin UPS-käyttöön, mutta vaadittu päivittäinen kennojännitteiden tasaus ja sen aiheuttama katkos energian saatavuuteen heikentää UPSin käyttövarmuutta kuorman suojauksessa. Lopussa esitettiin muutamia ehdotuksia tämän ongelman korjaamiseksi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today industries and commerce in Ghana are facing enormous energy challenge. The pressure is on for industries to reduce energy consumption, lower carbon emissions and provide se-cured power supply. Industrial electric motor energy efficiency improvement is one of the most important tools to reduce global warming threat and reduce electricity bills. In order to develop a strategic industrial energy efficiency policy, it is therefore necessary to study the barriers that inhibit the implementation of cost – effective energy efficiency measures and the driving forces that promote the implementation. The aim of this thesis is to analyse the energy consumption pattern of electric motors, study factors that promote or inhibit energy efficiency improvements in EMDS and provide cost – effective solutions that improve energy efficiency to bridge the existing energy efficiency gap in the surveyed industries. The results from this thesis has revealed that, the existence of low energy efficiency in motor-driven systems in the surveyed industries were due to poor maintenance practices, absence of standards, power quality issues, lack of access to capital and limited awareness to the im-portance of energy efficiency improvements in EMDS. However, based on the results pre-sented in this thesis, a policy approach towards industrial SMEs should primarily include dis-counted or free energy audit in providing the industries with the necessary information on potential energy efficiency measures, practice best motor management programmes and estab-lish a minimum energy performance standard (MEPS) for motors imported into the country. The thesis has also shown that education and capacity development programmes, financial incentives and system optimization are effective means to promote energy efficiency in elec-tric motor – driven systems in industrial SMEs in Ghana

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy scenarios are used as a tool to examine credible future states and pathways. The one who constructs a scenario defines the framework in which the possible outcomes exist. The credibility of a scenario depends on its compatibility with real world experiences, and on how well the general information of the study, methodology, and originality and processing of data are disclosed. In the thesis, selected global energy scenarios’ transparency and desirability from the society’s point of view were evaluated based on literature derived criteria. The global energy transition consists of changes to social conventions and economic development in addition to technological development. Energy solutions are economic and ethical choices due to far-reaching impacts of energy decision-making. Currently the global energy system is mostly based on fossil fuels, which is unsustainable over the long-term due to various reasons: negative climate change impacts, negative health impacts, depletion of fossil fuel reserves, resource-use conflicts with water management and food supply, loss of biodiversity, challenge to preserve ecosystems and resources for future generations, and inability of fossil fuels to provide universal access to modern energy services. Nuclear power and carbon capture and storage cannot be regarded as sustainable energy solutions due to their inherent risks and required long-term storage. The energy transition is driven by a growing energy demand, decreasing costs of renewables, modularity and scalability of renewable technologies, macroeconomic benefits of using renewables, investors’ risk awareness, renewable energy related attractive business opportunities, almost even distribution of solar and wind resources on the planet, growing awareness of the planet’s environmental status, environmental movements and tougher environmental legislation. Many of the investigated scenarios identified solar and wind power as a backbone for future energy systems. The scenarios, in which the solar and wind potentials were deployed in largest scale, met best the set out sustainability criteria. In future research, energy scenarios’ transparency can be improved by better disclosure on who has ordered the study, clarifying the funding, clearly referencing to used sources and indicating processed data, and by exploring how variations in cost assumptions and deployment of technologies influence on the outcomes of the study.