39 resultados para Energy methods
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The potential for enhancing the energy efficiency of industrial pumping processes is estimated to be in some cases up to 50 %. One way to define further this potential is to implement techniques in accordance to definition of best available techniques in pumping applications. These techniques are divided into three main categories: Design, control method & maintenance and distribution system. In the theory part of this thesis first the definition of best available techniques (BAT) and its applicability on pumping processes is issued. Next, the theory around pumping with different pump types is handled, the main stress being in centrifugal pumps. Other components needed in a pumping process are dealt by presenting different control methods, use of an electric motor, variable speed drive and the distribution system. Last part of the theory is about industrial pumping processes from water distribution, sewage water and power plant applications, some of which are used further on in the empirical part as example cases. For the empirical part of this study four case studies on typical pumping processes from older Master’s these were selected. Firstly the original results were analyzed by studying the distribution of energy consumption between different system components and using the definition of BAT in pumping, possible ways to improve energy efficiency were evaluated. The goal in this study was that by the achieved results it would be possible to identify the characteristic energy consumption of these and similar pumping processes. Through this data it would then be easier to focus energy efficiency actions where they might be the most applicable, both technically and economically.
Resumo:
The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.
Resumo:
Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Context: BL Lacs are the most numerous extragalactic objects which are detected in Very High Energy (VHE) gamma-rays band. They are a subclass of blazars. Large flux variability amplitude, sometimes happens in very short time scale, is a common characteristic of them. Significant optical polarization is another main characteristics of BL Lacs. BL Lacs' spectra have a continuous and featureless Spectral Energy Distribution (SED) which have two peaks. Among 1442 BL Lacs in the Roma-BZB catalogue, only 51 are detected in VHE gamma-rays band. BL Lacs are most numerous (more than 50% of 514 objects) objects among the sources that are detected above 10 GeV by FERMI-LAT. Therefore, many BL Lacs are expected to be discovered in VHE gamma-rays band. However, due to the limitation on current and near future technology of Imaging Air Cherenkov Telescope, astronomers are forced to predict whether an object emits VHE gamma-rays or not. Some VHE gamma-ray prediction methods are already introduced but still are not confirmed. Cross band correlations are the building blocks of introducing VHE gamma-rays prediction method. Aims: We will attempt to investigate cross band correlations between flux energy density, luminosity and spectral index of the sample. Also, we will check whether recently discovered MAGIC J2001+435 is a typical BL Lac. Methods: We select a sample of 42 TeV BL Lacs and collect 20 of their properties within five energy bands from literature and Tuorla blazar monitoring program database. All of the data are synchronized to be comparable to each other. Finally, we choose 55 pair of datasets for cross band correlations finding and investigating whether there is any correlation between each pair. For MAGIC J2001+435 we analyze the publicly available SWIFT-XRT data, and use the still unpublished VHE gamma-rays data from MAGIC collaboration. The results are compared to the other sources of the sample. Results: Low state luminosity of multiple detected VHE gamma-rays is strongly correlated luminosities in all other bands. However, the high state does not show such strong correlations. VHE gamma-rays single detected sources have similar behaviour to the low state of multiple detected ones. Finally, MAGIC J2001+435 is a typical TeV BL Lac. However, for some of the properties this source is located at the edge of the whole sample (e.g. in terms of X-rays flux). Keywords: BL Lac(s), Population study, Correlations finding, Multi wavelengths analysis, VHE gamma-rays, gamma-rays, X-rays, Optical, Radio
Resumo:
Pumping systems account for up to 22 % of the energy consumed by electrical motors in European industry. Many studies have shown that there is also a lot of potential for energy savings in these systems with the improvement of devices, flow control or surrounding sys-tem. The best method for more energy efficient pumping has to be found for each system separately. This thesis studies how energy saving potential in reservoir pumping system is affected by surrounding variables, such as the static head variation and friction factor. The objective is to create generally applicable graphs to quickly compare methods for reducing pumping system’s energy costs. The gained results are several graphs showcasing how the chosen variables affect energy saving potential of the pumping system in one specific case. To judge if these graphs are generally applicable, more testing with different pumps and environments are required.
Resumo:
The AQUAREL project studied the availability and optional utilization methods for fish processing side streams and other aquatic biomaterial in the Republic of Karelia. Additionally processing aquatic biomaterial with manure and sewage sludge was studied. Based on the results, the most feasible option today is to process fish side streams to fish oil and dewatered oil-free residue and to use them for fish or animal feed production. However, it is necessary to highlight, that changes in e.g. economic environment, energy prices and demand may require re-evaluating the results and conclusions made in the project. Producing fish oil from fish processing side streams is an easy and relatively simple production process generating a valuable end product. The functionality of the process was confirmed in a pilot conducted in the project. The oil and solids are separated from the heated fish waste based on gravity. The fish oil separating on top of the separator unit is removed. Fish oil can as such be utilized for heating purposes, fish meal or animal feed production, but it can also be further processed to biodiesel. However, due to currently moderate energy prices in Russia, biodiesel production is not economically profitable. Even if the fish oil production process is not complicated, the operative management of small-scale fish oil production unit requires dedicated resources and separate facilities especially to meet hygiene requirements. Managing the side streams is not a core business for fish farmers. Efficient and economically profitable fish oil production requires a centralized production unit with bigger processing capacity. One fish processing unit needs to be designed to manage side streams collected from several fish farms. The optimum location for the processing unit is in the middle of the fish farms. Based on the transportation cost analysis in the Republic of Karelia, it is not economically efficient to transport bio-wastes for more than 100 km since the transportation costs start increasing substantially. Another issue to be considered is that collection of side streams, including the dead fish, from the fish farms should be organized on a daily basis in order to eliminate the need for storing the side streams at the farms. Based on AQUAREL project studies there are different public funding sources available for supporting and enabling profitable and environmentally sustainable utilization, research or development of fish processing side streams and other aquatic biomaterial. Different funding programmes can be utilized by companies, research organizations, authorities and non-governmental organizations.
Resumo:
In the latter days, human activities constantly increase greenhouse gases emissions in the atmosphere, which has a direct impact on a global climate warming. Finland as European Union member, developed national structural plan to promote renewable energy generation, pursuing the aspects of Directive 2009/28/EC and put it on the sharepoint. Finland is on a way of enhancing national security of energy supply, increasing diversity of the energy mix. There are plenty significant objectives to develop onshore and offshore wind energy generation in country for a next few decades, as well as another renewable energy sources. To predict the future changes, there are a lot of scenario methods developed and adapted to energy industry. The Master’s thesis explored “Fuzzy cognitive maps” approach in scenarios developing, which captures expert’s knowledge in a graphical manner and using these captures for a raw scenarios testing and refinement. There were prospects of Finnish wind energy development for the year of 2030 considered, with aid of FCM technique. Five positive raw scenarios were developed and three of them tested against integrated expert’s map of knowledge, using graphical simulation. The study provides robust scenarios out of the preliminary defined, as outcome, assuming the impact of results, taken after simulation. The thesis was conducted in such way, that there will be possibilities to use existing knowledge captures from expert panel, to test and deploy different sets of scenarios regarding to Finnish wind energy development.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.
Resumo:
A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.
Resumo:
The aim of this project was to develop general framework for systematic assessment of energy efficiency of heating on regional level in Russia. The framework created during this project includes two main instruments, namely: general regional heating energy efficiency assessment model (REEMod) and general regional heating energy efficiency assessment criteria for housing areas (REECrit). Framework pays extreme attention to realization of energy saving, overall cost efficiency and comfortable indoor climate. Life-cycle ideology was applied during creation of the framework. Application of the framework can provide decision-making process with systematically collected and processed information on current state of areas energy efficiency. Such information will help decision makers to evaluate current situation of the whole energy chain, to compare different development scenarios and to identify the most efficient improvement methods, thus supporting realization of regions efficient energy management. Simultaneous pursuit of energy savings, cost efficiency and indoor air quality can contribute to development of sustainable community. Presented instruments should be continuously developed further as an iterative process based on knew experience, development of technology and overall understanding of energy efficiency issues.