79 resultados para Electric machines
Resumo:
This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options.
Resumo:
The power demand of many mobile working machines such as mine loaders, straddle carriers and harvesters varies significantly during operation, and typically, the average power demand of a working machine is considerably lower than the demand for maximum power. Consequently, for most of the time, the diesel engine of a working machine operates at a poor efficiency far from its optimum efficiency range. However, the energy efficiency of dieseldriven working machines can be improved by electric hybridization. This way, the diesel engine can be dimensioned to operate within its optimum efficiency range, and the electric drive with its energy storages responds to changes in machine loading. A hybrid working machine can be implemented in many ways either as a parallel hybrid, a series hybrid or a combination of these two. The energy efficiency of hybrid working machines can be further enhanced by energy recovery and reuse. This doctoral thesis introduces the component models required in the simulation model of a working machine. Component efficiency maps are applied to the modelling; the efficiency maps for electrical machines are determined analytically in the whole torque–rotational speed plane based on the electricalmachine parameters. Furthermore, the thesis provides simulation models for parallel, series and parallel-series hybrid working machines. With these simulation models, the energy consumption of the working machine can be analysed. In addition, the hybridization process is introduced and described. The thesis provides a case example of the hybridization and dimensioning process of a working machine, starting from the work cycle of the machine. The selection and dimensioning of the hybrid system have a significant impact on the energy consumption of a hybrid working machine. The thesis compares the energy consumption of a working machine implemented by three different hybrid systems (parallel, series and parallel-series) and with different component dimensions. The payback time of a hybrid working machine and the energy storage lifetime are also estimated in the study.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
This master’s thesis has been done for Drive! –project in which a new electric motor solution for mobile working machines is developed. Generic simulation model will be used as marketing and development tool. It can be used to model a wide variety of different vehicles with and without electric motor and to show customer the difference between traditionally build vehicles and those with new electric motor solution. Customers can also use simulation model to research different solutions for their own vehicles. At the start of the project it was decided that MeVEA software would be used as main simulation program and Simulink will only be used to simulate the operation of electrical components. Development of the generic model started with the research of these two software applications, simulation models which are made with them and how these simulation models can be build faster. Best results were used for building of generic simulation model. Finished generic model can be used to produce new tractor models for real-time simulations in short notice. All information about model is collected to one datasheet which can be easily filled by the user. After datasheet is filled a script will automatically build new simulation model in seconds. At the moment generic model is capable of building simulation models for wide variety of different tractors but it can be easily altered for other vehicle types too which would also benefit greatly from electric drive solution. Those could be for example wheel loaders and harvesters.
Resumo:
The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.
Resumo:
Electrical machine drives are the most electrical energy-consuming systems worldwide. The largest proportion of drives is found in industrial applications. There are, however many other applications that are also based on the use of electrical machines, because they have a relatively high efficiency, a low noise level, and do not produce local pollution. Electrical machines can be classified into several categories. One of the most commonly used electrical machine types (especially in the industry) is induction motors, also known as asynchronous machines. They have a mature production process and a robust rotor construction. However, in the world pursuing higher energy efficiency with reasonable investments not every application receives the advantage of using this type of motor drives. The main drawback of induction motors is the fact that they need slipcaused and thus loss-generating current in the rotor, and additional stator current for magnetic field production along with the torque-producing current. This can reduce the electric motor drive efficiency, especially in low-speed, low-power applications. Often, when high torque density is required together with low losses, it is desirable to apply permanent magnet technology, because in this case there is no need to use current to produce the basic excitation of the machine. This promotes the effectiveness of copper use in the stator, and further, there is no rotor current in these machines. Again, if permanent magnets with a high remanent flux density are used, the air gap flux density can be higher than in conventional induction motors. These advantages have raised the popularity of PMSMs in some challenging applications, such as hybrid electric vehicles (HEV), wind turbines, and home appliances. Usually, a correctly designed PMSM has a higher efficiency and consequently lower losses than its induction machine counterparts. Therefore, the use of these electrical machines reduces the energy consumption of the whole system to some extent, which can provide good motivation to apply permanent magnet technology to electrical machines. However, the cost of high performance rare earth permanent magnets in these machines may not be affordable in many industrial applications, because the tight competition between the manufacturers dictates the rules of low-cost and highly robust solutions, where asynchronous machines seem to be more feasible at the moment. Two main electromagnetic components of an electrical machine are the stator and the rotor. In the case of a conventional radial flux PMSM, the stator contains magnetic circuit lamination and stator winding, and the rotor consists of rotor steel (laminated or solid) and permanent magnets. The lamination itself does not significantly influence the total cost of the machine, even though it can considerably increase the construction complexity, as it requires a special assembly arrangement. However, thin metal sheet processing methods are very effective and economically feasible. Therefore, the cost of the machine is mainly affected by the stator winding and the permanent magnets. The work proposed in this doctoral dissertation comprises a description and analysis of two approaches of PMSM cost reduction: one on the rotor side and the other on the stator side. The first approach on the rotor side includes the use of low-cost and abundant ferrite magnets together with a tooth-coil winding topology and an outer rotor construction. The second approach on the stator side exploits the use of a modular stator structure instead of a monolithic one. PMSMs with the proposed structures were thoroughly analysed by finite element method based tools (FEM). It was found out that by implementing the described principles, some favourable characteristics of the machine (mainly concerning the machine size) will inevitable be compromised. However, the main target of the proposed approaches is not to compete with conventional rare earth PMSMs, but to reduce the price at which they can be implemented in industrial applications, keeping their dimensions at the same level or lower than those of a typical electrical machine used in the industry at the moment. The measurement results of the prototypes show that the main performance characteristics of these machines are at an acceptable level. It is shown that with certain specific actions it is possible to achieve a desirable efficiency level of the machine with the proposed cost reduction methods.
Resumo:
Lectio praecursoria
Resumo:
Summary
Resumo:
Doctoral dissertation, Academy of Fine Arts
Resumo:
Työn tavoitteena on kartoittaa yhdyskuntalietteen käsittelyä lietteenpolttolaitoksen tarpeita ajatellen. Lietteen käsittelytekniikoiden ja kuljetusvaihtoehtojen selvittäminen on siis työn keskeinen tavoite. Lisäksi otetaan selvää näiden tekijöiden kustannusrakenteesta. Yhdyskuntalietteen ominaisuuksien sekä käsittelyyn liittyvien ongelmakohtien valottaminen kuuluu samoin työn tavoitteisiin. Työssä tehdään muun ohella case-tarkastelua Kaakkois-Suomen alueeseen liittyen. Tavoitteena on muodostaa tarkoitukseen soveltuva lietteenkäsittelymalli kullekin tapaukselle. Työn alkuosassa tutustutaan yleisesti lietteeseen sekä polttoaineen että jätteen roolissa. Tarkastelu sisältää tietoja lietteen ominaisuuksista ja muodostuvista määristä sekä lietteenkäsittelyssä olennaisista lainsäädännöllisistä seikoista. Samoin katsastetaan hieman jäteve¬denpuhdistusprosessiin sekä näin ollen lietteen syntyyn. Lietteen esikäsittelyä, mekaanista vedenerotusta, termistä kuivausta ja polttoa tarkastellaan yleisessä valossa. Mekaanisen vedenerotuksen osalta myös eritellään ja vertaillaan laitteita. Etenkin linko, mutta myös suotonauhapuristin osoittautuivat erityisen sopiviksi kunnallisen lietteen käsittelyyn. Työn loppupuoliskolla kiinnitetään huomiota lietteen varastointiin sekä syöttö-ja purkumenetelmiin, lyhyen etäisyyden siirtoon ja pidemmän matkan kuljetukseen. Case-tapauksissa pohditaan Kymenlaakson ja Etelä-Karjalan paikallisia lietteenkäsittelymahdollisuuksia. Mekaanisesti kuivattua lietettä käsitellään kyseisissätapauksissa vuosittain 6000 t ja 15 000 t. Lietteen polton tuottama sähkö- ja lämpöteho näyttävät riippuvan voimakkaasti lietteen kuiva-ainepitoisuudesta, eivät niinkään lietteen muista ominaisuuksista. Lietteenkäsittelykustannukset tiivistetystä lietteestä termiseen kuivaukseen soveltuvaksi polttoaineeksi vaihtelevat10-20 \ lietetonnia kohden, riippuen käsittelyvaiheiden määrästä. Kustannuksia syntyy eniten mekaanisesta vedenerotuksesta ja varastoinnista.
Resumo:
Venäjän valtion osuus maailmantaloudesta on pieni verrattuna sen maantieteelliseen kokoon, väkilukuun ja luonnonvaroihin. Sitä pidetään kuitenkin yhtenä tulevaisuuden merkittävistä kasvumarkkinoista. Venäjällä on tyypillisesti teollisuutta, joka hyödyntää luonnonvaroja ja tuottaa raaka-aineita sekä kotimaan että ulkomaiden markkinoille. Tällaisia tyypillisiä teollisuudenaloja Venäjällä ovat kaivos- ja metsäteollisuus sekä kemikaalien- kaasun- ja öljyntuotanto. Myös näiden teollisuusalojen tarvitsemien tuotantolaitteiden ja koneiden valmistusta on Venäjällä. Näitä koneita viedään Venäjältä entisiin neuvostovaltioihin ja päinvastoin. Tässä diplomityössä tutkitaan sähkömoottorien markkinapotentiaalia ja kilpailutilannetta Venäjällä. Venäjän osalta perehdytään sen kansantalouden tilaan ja tutkitaan sähkökonemarkkinoiden kokoa segmenteittäin monien erilähteiden avulla. Venäjän arvioidaan olevan erittäin potentiaalinen ja kasvava markkina-alue. Diplomityössä selvitetään ostoprosessia Venäjällä ja sähkökonemarkkinoiden ominaisuuksia kyseisellä alueella.
Resumo:
The solid-rotor induction motor provides a mechanically and thermally reliable solution for demanding environments where other rotor solutions are prohibited or questionable. Solid rotors, which are manufactured of single pieces of ferromagnetic material, are commonly used in motors in which the rotationspeeds exceed substantially the conventional speeds of laminated rotors with squirrel-cage. During the operation of a solid-rotor electrical machine, the rotor core forms a conductor for both the magnetic flux and the electrical current. This causes an increase in the rotor resistance and rotor leakage inductance, which essentially decreases the power factor and the efficiency of the machine. The electromagnetic problems related to the solid-rotor induction motor are mostly associated with the low performance of the rotor. Therefore, the main emphasis in this thesis is put on the solid steel rotor designs. The rotor designs studied in thisthesis are based on the fact that the rotor construction should be extremely robust and reliable to withstand the high mechanical stresses caused by the rotational velocity of the rotor. In addition, the demanding operation environment sets requirements for the applied materials because of the high temperatures and oxidizing acids, which may be present in the cooling fluid. Therefore, the solid rotors analyzed in this thesis are made of a single piece of ferromagnetic material without any additional parts, such as copper end-rings or a squirrel-cage. A pure solid rotor construction is rigid and able to keep its balance over a large speed range. It also may tolerate other environmental stresses such as corroding substances or abrasive particles. In this thesis, the main target is to improve the performance of an induction motor equipped with a solid steel rotor by traditional methods: by axial slitting of the rotor, by selecting a proper rotor core material and by coating the rotor with a high-resistive stainless ferromagnetic material. In the solid steel rotor calculation, the rotor end-effects have a significant effect on the rotor characteristics. Thus, the emphasis is also put on the comparison of different rotor endfactors. In addition, a corrective slip-dependent end-factor is proposed. The rotor designs covered in this thesis are the smooth solid rotor, the axially slitted solid rotor and the slitted rotor having a uniform ferromagnetic coating cylinder. The thesis aims at design rules for multi-megawatt machines. Typically, mega-watt-size solidrotor machines find their applications mainly in the field of electric-motor-gas-compression systems, in steam-turbine applications, and in various types of largepower pump applications, where high operational speeds are required. In this thesis, a 120 kW, 10 000 rpm solid-rotor induction motor is usedas a small-scale model for such megawatt-range solid-rotor machines. The performance of the 120 kW solid-rotor induction motors is determined by experimental measurements and finite element calculations.
Resumo:
In the electrical industry the 50 Hz electric and magnetic fields are often higher than in the average working environment. The electric and magnetic fields can be studied by measuring or by calculatingthe fields in the environment. For example, the electric field under a 400 kV power line is 1 to 10 kV/m, and the magnetic flux density is 1 to 15 µT. Electricand magnetic fields of a power line induce a weak electric field and electric currents in the exposed body. The average current density in a human being standing under a 400 kV line is 1 to 2 mA/m2. The aim of this study is to find out thepossible effects of short term exposure to electric and magnetic fields of electricity power transmission on workers' health, in particular the cardiovascular effects. The study consists of two parts; Experiment I: influence on extrasystoles, and Experiment II: influence on heart rate. In Experiment I two groups, 26 voluntary men (Group 1) and 27 transmission-line workers (Group 2), were measured. Their electrocardiogram (ECG) was recorded with an ambulatory recorder both in and outside the field. In Group 1 the fields were 1.7 to 4.9 kV/m and 1.1 to 7.1 pT; in Group 2 they were 0.1 to 10.2 kV/m and 1.0 to 15.4 pT. In the ECG analysis the only significant observation was a decrease in the heart rate after field exposure (Group 1). The drop cannot be explained with the first measuring method. Therefore Experiment II was carried out. In Experiment II two groups were used; Group 1 (26 male volunteers) were measured in real field exposure, Group 2 (15 male volunteers) in "sham" fields. The subjects of Group 1 spent 1 h outside the field, then 1 h in the field under a 400 kV transmission line, and then again 1 h outside the field. Under the 400 kV linethe field strength varied from 3.5 to 4.3 kV/m, and from 1.4 to 6.6 pT. Group 2spent the entire test period (3 h) in a 33 kV outdoor testing station in a "sham" field. ECG, blood pressure, and electroencephalogram (EEG) were measured by ambulatory methods. Before and after the field exposure, the subjects performed some cardiovascular autonomic function tests. The analysis of the results (Experiments I and II) showed that extrasystoles or arrythmias were as frequent in the field (below 4 kV/m and 4 pT) as outside it. In Experiment II there was no decrease detected in the heart rate, and the systolic and diastolic blood pressure stayed nearly the same. No health effects were found in this study.
Resumo:
Thedirect torque control (DTC) has become an accepted vector control method besidethe current vector control. The DTC was first applied to asynchronous machines,and has later been applied also to synchronous machines. This thesis analyses the application of the DTC to permanent magnet synchronous machines (PMSM). In order to take the full advantage of the DTC, the PMSM has to be properly dimensioned. Therefore the effect of the motor parameters is analysed taking the control principle into account. Based on the analysis, a parameter selection procedure is presented. The analysis and the selection procedure utilize nonlinear optimization methods. The key element of a direct torque controlled drive is the estimation of the stator flux linkage. Different estimation methods - a combination of current and voltage models and improved integration methods - are analysed. The effect of an incorrect measured rotor angle in the current model is analysed andan error detection and compensation method is presented. The dynamic performance of an earlier presented sensorless flux estimation method is made better by improving the dynamic performance of the low-pass filter used and by adapting the correction of the flux linkage to torque changes. A method for the estimation ofthe initial angle of the rotor is presented. The method is based on measuring the inductance of the machine in several directions and fitting the measurements into a model. The model is nonlinear with respect to the rotor angle and therefore a nonlinear least squares optimization method is needed in the procedure. A commonly used current vector control scheme is the minimum current control. In the DTC the stator flux linkage reference is usually kept constant. Achieving the minimum current requires the control of the reference. An on-line method to perform the minimization of the current by controlling the stator flux linkage reference is presented. Also, the control of the reference above the base speed is considered. A new estimation flux linkage is introduced for the estimation of the parameters of the machine model. In order to utilize the flux linkage estimates in off-line parameter estimation, the integration methods are improved. An adaptive correction is used in the same way as in the estimation of the controller stator flux linkage. The presented parameter estimation methods are then used in aself-commissioning scheme. The proposed methods are tested with a laboratory drive, which consists of a commercial inverter hardware with a modified software and several prototype PMSMs.