18 resultados para ENVIRONMENTAL-CONDITIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are more than 7000 languages in the world, and many of these have emerged through linguistic divergence. While questions related to the drivers of linguistic diversity have been studied before, including studies with quantitative methods, there is no consensus as to which factors drive linguistic divergence, and how. In the thesis, I have studied linguistic divergence with a multidisciplinary approach, applying the framework and quantitative methods of evolutionary biology to language data. With quantitative methods, large datasets may be analyzed objectively, while approaches from evolutionary biology make it possible to revisit old questions (related to, for example, the shape of the phylogeny) with new methods, and adopt novel perspectives to pose novel questions. My chief focus was on the effects exerted on the speakers of a language by environmental and cultural factors. My approach was thus an ecological one, in the sense that I was interested in how the local environment affects humans and whether this human-environment connection plays a possible role in the divergence process. I studied this question in relation to the Uralic language family and to the dialects of Finnish, thus covering two different levels of divergence. However, as the Uralic languages have not previously been studied using quantitative phylogenetic methods, nor have population genetic methods been previously applied to any dialect data, I first evaluated the applicability of these biological methods to language data. I found the biological methodology to be applicable to language data, as my results were rather similar to traditional views as to both the shape of the Uralic phylogeny and the division of Finnish dialects. I also found environmental conditions, or changes in them, to be plausible inducers of linguistic divergence: whether in the first steps in the divergence process, i.e. dialect divergence, or on a large scale with the entire language family. My findings concerning Finnish dialects led me to conclude that the functional connection between linguistic divergence and environmental conditions may arise through human cultural adaptation to varying environmental conditions. This is also one possible explanation on the scale of the Uralic language family as a whole. The results of the thesis bring insights on several different issues in both a local and a global context. First, they shed light on the emergence of the Finnish dialects. If the approach used in the thesis is applied to the dialects of other languages, broader generalizations may be drawn as to the inducers of linguistic divergence. This again brings us closer to understanding the global patterns of linguistic diversity. Secondly, the quantitative phylogeny of the Uralic languages, with estimated times of language divergences, yields another hypothesis as to the shape and age of the language family tree. In addition, the Uralic languages can now be added to the growing list of language families studied with quantitative methods. This will allow broader inferences as to global patterns of language evolution, and more language families can be included in constructing the tree of the world’s languages. Studying history through language, however, is only one way to illuminate the human past. Therefore, thirdly, the findings of the thesis, when combined with studies of other language families, and those for example in genetics and archaeology, bring us again closer to an understanding of human history.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Fescues consist of wild and cultivated grasses that have adapted to a wide range of environmental conditions. They are an excellent model species for evolutionary ecology studies that investigate symbiosis and polyploidization and their effects on plant performance. First, they are frequently infected with symbiotic endophytic fungi known to affect a plant’s ability to cope with biotic and abiotic environmental factors. Second, fescue species have been reported to have substantial intraspecific variation in their ploidy level and morphology. In my thesis, I examined large-scale generalizations for frequency of polyploidy and endophyte infections and their effects on plant morphology. As a model species, I selected red (Festuca rubra) and viviparous sheep’s (F. vivipara) fescues. They are closely related, but they differ in terms of distribution and endophyte infection frequency. I investigated the biogeographic pattern and population biology of 29 red and 12 viviparous sheep’s fescue populations across ≈300 latitudes in Europe (400-690 N). To examine plant ploidy levels, I implemented time- and cost-efficient plate-based high throughput flow cytometric analysis. This efficient procedure enabled me to analyze over 1000 red fescue individuals. I found three ploidy levels among them: overall 84 %, 9 % and 7 % of the red fescue plants were hexaploid, tetraploid and octoploid, respectively. However, all viviparous sheep’s fescue plants were tetraploid. Ploidy level of red fescue appeared to some extent follow gradients in latitude and primary production as suggested by previous studies, but these results could be explained better by taking the sampling design and local adaptation into account. Three Spanish populations were mostly tetraploids and one high elevation population in northernmost Finland (Halti) was octoploid, while most other populations (25 sites) were dominated by hexaploids. Endophyte infection frequencies of wild fescue populations varied from 0 to 81 % in red fescue populations and from 0 to 30 % in viviparous sheep’s fescue populations. No gradients with latitude or primary production of the sites were detected. As taxonomy of red fescues is somewhat unclear, I also studied morphology, ploidy variation and endophyte status of proposed subspecies of European red fescues. Contrary to previous literature, different ploidy levels occurred in the same subspecies. In addition to wild fescues, I also used two agronomically important cultivars of meadow and tall fescue (Schedonorus phoenix and S. pratensis). As grass-legume mixtures have an agronomic advantage over monocultures in meadows, I carried out a mixture/competition experiment with fescues and red clover to find that species composition, nutrient availability and endophyte status together determined the total biomass yield that was higher in mixtures compared to monocultures. The results of this thesis demonstrate the importance of local biotic and abiotic factors such as grazing gradients and habitat types, rather than suggested general global geographical or environmental factors on grass polyploidization or its association with symbiotic endophytic fungi. I conclude that variation in endophyte infection frequencies and ploidy levels of wild fescues support the geographic mosaic theory of coevolution. Historical incidents, e.g., glaciation and present local factors, rather than ploidy or endophyte status, determine fescue morphology.