19 resultados para Distribution transformer modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is to examine distribution network designs and modeling practices and create a framework to identify best possible distribution network structure for the case company. The main research question therefore is: How to optimize case company’s distribution network in terms of customer needs and costs? Theory chapters introduce the basic building blocks of the distribution network design and needed calculation methods and models. Framework for the distribution network projects was created based on the theory and the case study was carried out by following the defined framework. Distribution network calculations were based on the company’s sales plan for the years 2014 - 2020. Main conclusions and recommendations were that the new Asian business strategy requires high investments in logistics and the first step is to open new satellite DC in China as soon as possible to support sales and second possible step is to open regional DC in Asia within 2 - 4 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Master Thesis the characteristics of the chosen fractal microstrip antennas are investigated. For modeling has been used the structure of the square Serpinsky fractal curves. During the elaboration of this Master thesis the following steps were undertaken: 1) calculation and simulation of square microstrip antennа, 2) optimizing for obtaining the required characteristics on the frequency 2.5 GHz, 3) simulation and calculation of the second and third iteration of the Serpinsky fractal curves, 4) radiation patterns and intensity distribution of these antennas. In this Master’s Thesis the search for the optimal position of the port and fractal elements was conducted. These structures can be used in perspective for creation of antennas working at the same time in different frequency range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building Information Modeling – BIM is widely spreading in the Architecture, Engineering, and Construction (AEC) industries. Manufacturers of building elements are also starting to provide more and more objects of their products. The ideal availability and distribution for these models is not yet stabilized. Usual goal of a manufacturer is to get their model into design as early as possible. Finding the ways to satisfy customer needs with a superior service would help to achieve this goal. This study aims to seek what case company’s customers want out of the model and what they think is the ideal way to obtain these models and what are the desired functionalities for this service. This master’s thesis uses a modified version of lead user method to gain understanding of what the needs are in a longer term. In this framework also benchmarking of current solutions and their common model functions is done. Empirical data is collected with survey and interviews. As a result this thesis provides understanding that what is the information customer uses when obtaining a model, what kind of model is expected to be achieved and how is should the process optimally function. Based on these results ideal service is pointed out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.