22 resultados para Distributed network protocol


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today's communication networks consist of numerous interdependent network components. To manage these networks and to ensure their reliable and efficient operation to meet the increasing customer usability demands, extensive network management tools are required from the service provider. The goal of this study was to adapt the Next Generation Network (NGN) providing VoIP services within a performance oriented network management system. This study focuses only on NGN network and the project was implemented as an assignment of the Network Operations Center of Elisa Corporation. The theoretical part of this study introduces the network environment of the Elisa NGN platform: its components and used signalling protocols as well as other exploitable communication protocols. In addition, the Simple Network Management Protocol (SNMP) is closely examined since it is commonly used as the basis of IP (Internet Protocol) network management. Also some primary applications enabled by the NGN technology are introduced. The empirical part of this study contains a short overview of the implemented network performance management system and its properties. The most crucial monitored MIB modules, SNMP parameters and implemented performance measurements are described. The trap topology and the role of the traps for management of the NGN platform are considered and finally, the conclusion based on the several disquisitions is made supported with suggestions for future improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation has traditionally been used for analyzing the behavior of complex real world problems. Even though only some features of the problems are considered, simulation time tends to become quite high even for common simulation problems. Parallel and distributed simulation is a viable technique for accelerating the simulations. The success of parallel simulation depends heavily on the combination of the simulation application, algorithm and message population in the simulation is sufficient, no additional delay is caused by this environment. In this thesis a conservative, parallel simulation algorithm is applied to the simulation of a cellular network application in a distributed workstation environment. This thesis presents a distributed simulation environment, Diworse, which is based on the use of networked workstations. The distributed environment is considered especially hard for conservative simulation algorithms due to the high cost of communication. In this thesis, however, the distributed environment is shown to be a viable alternative if the amount of communication is kept reasonable. Novel ideas of multiple message simulation and channel reduction enable efficient use of this environment for the simulation of a cellular network application. The distribution of the simulation is based on a modification of the well known Chandy-Misra deadlock avoidance algorithm with null messages. The basic Chandy Misra algorithm is modified by using the null message cancellation and multiple message simulation techniques. The modifications reduce the amount of null messages and the time required for their execution, thus reducing the simulation time required. The null message cancellation technique reduces the processing time of null messages as the arriving null message cancels other non processed null messages. The multiple message simulation forms groups of messages as it simulates several messages before it releases the new created messages. If the message population in the simulation is suffiecient, no additional delay is caused by this operation A new technique for considering the simulation application is also presented. The performance is improved by establishing a neighborhood for the simulation elements. The neighborhood concept is based on a channel reduction technique, where the properties of the application exclusively determine which connections are necessary when a certain accuracy for simulation results is required. Distributed simulation is also analyzed in order to find out the effect of the different elements in the implemented simulation environment. This analysis is performed by using critical path analysis. Critical path analysis allows determination of a lower bound for the simulation time. In this thesis critical times are computed for sequential and parallel traces. The analysis based on sequential traces reveals the parallel properties of the application whereas the analysis based on parallel traces reveals the properties of the environment and the distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity distribution network operation (NO) models are challenged as they are expected to continue to undergo changes during the coming decades in the fairly developed and regulated Nordic electricity market. Network asset managers are to adapt to competitive technoeconomical business models regarding the operation of increasingly intelligent distribution networks. Factors driving the changes for new business models within network operation include: increased investments in distributed automation (DA), regulative frameworks for annual profit limits and quality through outage cost, increasing end-customer demands, climatic changes and increasing use of data system tools, such as Distribution Management System (DMS). The doctoral thesis addresses the questions a) whether there exist conditions and qualifications for competitive markets within electricity distribution network operation and b) if so, identification of limitations and required business mechanisms. This doctoral thesis aims to provide an analytical business framework, primarily for electric utilities, for evaluation and development purposes of dedicated network operation models to meet future market dynamics within network operation. In the thesis, the generic build-up of a business model has been addressed through the use of the strategicbusiness hierarchy levels of mission, vision and strategy for definition of the strategic direction of the business followed by the planning, management and process execution levels of enterprisestrategy execution. Research questions within electricity distribution network operation are addressed at the specified hierarchy levels. The results of the research represent interdisciplinary findings in the areas of electrical engineering and production economics. The main scientific contributions include further development of the extended transaction cost economics (TCE) for government decisions within electricity networks and validation of the usability of the methodology for the electricity distribution industry. Moreover, DMS benefit evaluations in the thesis based on the outage cost calculations propose theoretical maximum benefits of DMS applications equalling roughly 25% of the annual outage costs and 10% of the respective operative costs in the case electric utility. Hence, the annual measurable theoretical benefits from the use of DMS applications are considerable. The theoretical results in the thesis are generally validated by surveys and questionnaires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet of Things (IoT) technologies are developing rapidly, and therefore there exist several standards of interconnection protocols and platforms. The existence of heterogeneous protocols and platforms has become a critical challenge for IoT system developers. To mitigate this challenge, few alliances and organizations have taken the initiative to build a framework that helps to integrate application silos. Some of these frameworks focus only on a specific domain like home automation. However, the resource constraints in the large proportion of connected devices make it difficult to build an interoperable system using such frameworks. Therefore, a general purpose, lightweight interoperability framework that can be used for a range of devices is required. To tackle the heterogeneous nature, this work introduces an embedded, distributed and lightweight service bus, Lightweight IoT Service bus Architecture (LISA), which fits inside the network stack of a small real-time operating system for constrained nodes. LISA provides a uniform application programming interface for an IoT system on a range of devices with variable resource constraints. It hides platform and protocol variations underneath it, thus facilitating interoperability in IoT implementations. LISA is inspired by the Network on Terminal Architecture, a service centric open architecture by Nokia Research Center. Unlike many other interoperability frameworks, LISA is designed specifically for resource constrained nodes and it provides essential features of a service bus for easy service oriented architecture implementation. The presented architecture utilizes an intermediate computing layer, a Fog layer, between the small nodes and the cloud, thereby facilitating the federation of constrained nodes into subnetworks. As a result of a modular and distributed design, the part of LISA running in the Fog layer handles the heavy lifting to assist the lightweight portion of LISA inside the resource constrained nodes. Furthermore, LISA introduces a new networking paradigm, Node Centric Networking, to route messages across protocol boundaries to facilitate interoperability. This thesis presents a concept implementation of the architecture and creates a foundation for future extension towards a comprehensive interoperability framework for IoT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IoT consists of essentially thousands of tiny sensor nodes interconnected to the internet, each one of which executes the programmed functions under memory and power limita- tions. The sensor nodes are distributed mainly for gathering data in various situations. IoT envisions the future technologies such as e-health, smart city, auto-mobiles automa- tion, construction sites automation, and smart home. Secure communication of data under memory and energy constraints is major challenge in IoT. Authentication is the first and important phase of secure communication. This study presents a protocol to authenticate resource constraint devices in physical proximity by solely using the shared wireless communication interfaces. This model of authentication only relies on the abundance of ambient radio signals to authenticate in less than a second. To evaluate the designed protocol, SkyMotes are emulated in a network environment simulated by Contiki/COOJA. Results presented during this study proves that this approach is immune against passive and active attacks. An adversary located as near as two meters can be identified in less than a second with minimal expense of energy. Since, only radio device is used as required hardware for the authentication, this technique is scalable and interoperable to heterogeneous nature of IoT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.