33 resultados para Direct torque control


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study how conveyor drives in refrigerating rooms affect total energy costs. Studied conveyor drives are different types of gear motor drives. Energy efficiencies of the conveyor drives are determined by using direct torque measurement and energy costs of the conveyor drives are approximated from these results. From the measurement results and the approximated total costs it can be seen how the energy efficiency of a conveyor drive has a considerable influence on the total costs, especially, with large operating hours. An energy efficient conveyor drive can minimize the total energy costs by reducing the energy consumption of the conveyor motor while cooling costs in refrigerated rooms are also reduced.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työssä toteutettiin C-kielellä luistonestojärjestelmä ja elektroninen tasauspyörästö Simulinkmallien pohjalta hybridityökoneeseen. Hybridityökoneen sähkökäytöt mahdollistavat tarkan vääntömomentin säädön, joka mahdollistaa työssä kuvatun kaltaisen järjestelmän toteuttamisen. Toteutettua järjestelmää simuloitiin MeVEA Oy:n ajoneuvomallinnukseen kehitetyssä simulaattorissa. Lisäksi järjestelmästä kehitettiin Visedo Oy:n sähkökäyttösimulaattoriin sopiva versio, jota testattiin Visedon sähkökäyttöjä simuloivan ohjelman kanssa. Simulointituloksien mukaan luistonesto estää vetäviä pyöriä luistamasta liukkaalla alustalla eikä toisaalta vähennä aiheetta kuljettajan asettamaa vääntömomenttia. Myös sähköinen tasauspyörästö toimi kuten oli suunniteltu. Työssä kehitetty luistonesto tarvitsee toimiakseen tiedon ajoneuvon kokonaismassasta, joten työssä kehitettiin myös tapa ajoneuvon massan estimoimiseksi ajoneuvon kiihdyttäessä. Massan estimointia testattiin pitävällä ja liukkaalla alustalla. Massan estimointi toimi simulaattoriympäristössä hyvällä tarkkuudella.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High dynamic performance of an electric motor is a fundamental prerequisite in motion control applications, also known as servo drives. Recent developments in the field of microprocessors and power electronics have enabled faster and faster movements with an electric motor. In such a dynamically demanding application, the dimensioning of the motor differs substantially from the industrial motor design, where feasible characteristics of the motor are for example high efficiency, a high power factor, and a low price. In motion control instead, such characteristics as high overloading capability, high-speed operation, high torque density and low inertia are required. The thesis investigates how the dimensioning of a high-performance servomotor differs from the dimensioning of industrial motors. The two most common servomotor types are examined; an induction motor and apermanent magnet synchronous motor. The suitability of these two motor types indynamically demanding servo applications is assessed, and the design aspects that optimize the servo characteristics of the motors are analyzed. Operating characteristics of a high performance motor are studied, and some methods for improvements are suggested. The main focus is on the induction machine, which is frequently compared to the permanent magnet synchronous motor. A 4 kW prototype induction motor was designed and manufactured for the verification of the simulation results in the laboratory conditions. Also a dynamic simulation model for estimating the thermal behaviour of the induction motor in servo applications was constructed. The accuracy of the model was improved by coupling it with the electromagnetic motor model in order to take into account the variations in the motor electromagnetic characteristics due to the temperature rise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena oli tutkia älykkäiden paikoituskäyttöjen markkinoita ja liiketoimintamalleja. Työn pääongelmina oli määritellä alalla käytössä olevaa terminologiaa, määrittää markkinoiden koko paikoitusominaisuudet omaaville kolmivaihetaajuusmuuttajille, tutkia viiden alalla toimivan paikoituskäyttötoimittajan liiketoimintarakenteita ja tuotteita teknisestä näkökulmasta sekä esitellä kaksi teollisuuden käyttökohdetta paikoituskäytölle. Työn sisältö voidaan jakaa neljään eri osioon. Terminologian määrittely- ja markkinatutkimusosiot perustuvat pääasiassa kirjallisuustutkimukseen. Paikoituskäyttöjen toimittajia sekä niiden tuotteita käsittelevä osuus perustuu kirjallisuustutkimukseen sekä teknisiin esitteisiin ja manuaaleihin. Paikoituskäyttöjen sovellusesimerkit on selvitetty haastatteluin. Työ painottuu paikoituskäyttötoimittajien tuotteiden, tuoteominaisuuksien ja tuotetarjonnan tarkasteluun. Työn tuloksena on määritelty paikoituskäyttöjen liiketoiminnan tärkeimmät termit, paikoituskäyttöjen markkinoiden koko sekä markkinoiden koko paikoitusominaisuudet omaavalle kolmivaihetaajuusmuuttajalle. Alalla toimivien paikoituskäyttötoimittajien liiketoimintarakenne on selvitetty, jonka mukaan toimittajat on profiloitu komponentti-, komponenttipaketti-, toimialakeskeisiksi tai automaatiotoimittajiksi. Toimittajien paikoituskäyttötuotteet on luokiteltu viiteen eri luokkaan niiden teknisten ominaisuuksien perusteella. Lisäksi paikoituskäyttöjen suorituskyvyt on selvitetty säätimien momentti-, nopeus-, ja paikoituslaskenta-aikatasojen sekä kenttäväyläliityntöjen suhteen. Työssä kuvatut vanerinsorvausprosessi sekä FMS -materiaalinkäsittelyprosessi esittävät paikoituskäyttöjen potentiaalisia sovelluskohteita.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the thesis is to study the principles of the permanent magnet linear synchronous motor (PMLSM) and to develop a simulator model of direct force controlled PMLSM. The basic motor model is described by the traditional two-axis equations. The end effects, cogging force and friction model are also included into the final motor model. Direct thrust force control of PMLSM is described and modelled. The full system model is proven by comparison with the data provided by the motor manufacturer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoclasts are cells responsible for bone resorption. These cells undergo extensive membrane re-organization during their polarization for bone resorption and form four distinct membrane domains, namely the ruffled border, the basolateral membrane, the sealing zone and the functional secretory domain. The endocytic/biosynthetic pathway and transcytotic route(s) are important for the resorption process, since the endocytic/biosynthetic pathway brings the specific vesicles to the ruffled border whereas the transcytotic flow is believed to transport the degraded bone matrix away from the resorption lacuna to the functional secretory domain. In the present study, we found a new transcytotic route from the functional secretory domain to the ruffled border, which may compensate membrane loss from the ruffled border during the resorption process. We also found that lipid rafts are essential for the ruffled border-targeted late endosomal pathways. A small GTP-binding protein, Rab7, has earlier been shown to regulate the late steps of the endocytic pathway. In bone-resorbing osteoclasts it is involved in the formation of the ruffled border, which displays several features of late endosomal membranes. Here we discovered a new Rab7-interacting protein, Rac1, which is another small GTP-binding protein and binds to the GTP-form of Rab7 in vitro. We demonstrated further that Rab7 colocalizes with Rac1 at the fusion zone of the ruffled border in bone-resorbing osteoclasts. In other cell types, such as fibroblast-like cells, this colocalization is mainly perinuclear. Because Rac1 is known to control the actin cytoskeleton through its effectors, we suggest that the Rab7-Rac1 interaction may mediate late endosomal transport between microtubules and microfilaments, thus enabling endosomal vesicles to switch tracks from microtubules to microfilaments before their fusion to the ruffled border. We then studied the role of Rab-Rac1 interaction in the slow recycling pathway. We revealed that Rac1 also binds directly to Rab11 and to some other but not all Rab-proteins, suggesting that Rab-Rac1 interaction could be a general regulatory mechanism to direct the intracellular vesicles from microtubule mediated transport to actin filament mediated transport and vice versa. On the basis of our results we thus propose a new hypothesis for these GTPases in the regulation of intracellular membrane flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches – hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s electrical machine technology allows increasing the wind turbine output power by an order of magnitude from the technology that existed only ten years ago. However, it is sometimes argued that high-power direct-drive wind turbine generators will prove to be of limited practical importance because of their relatively large size and weight. The limited space for the generator in a wind turbine application together with the growing use of wind energy pose a challenge for the design engineers who are trying to increase torque without making the generator larger. When it comes to high torque density, the limiting factor in every electrical machine is heat, and if the electrical machine parts exceed their maximum allowable continuous operating temperature, even for a short time, they can suffer permanent damage. Therefore, highly efficient thermal design or cooling methods is needed. One of the promising solutions to enhance heat transfer performances of high-power, low-speed electrical machines is the direct cooling of the windings. This doctoral dissertation proposes a rotor-surface-magnet synchronous generator with a fractional slot nonoverlapping stator winding made of hollow conductors, through which liquid coolant can be passed directly during the application of current in order to increase the convective heat transfer capabilities and reduce the generator mass. This doctoral dissertation focuses on the electromagnetic design of a liquid-cooled direct-drive permanent-magnet synchronous generator (LC DD-PMSG) for a directdrive wind turbine application. The analytical calculation of the magnetic field distribution is carried out with the ambition of fast and accurate predicting of the main dimensions of the machine and especially the thickness of the permanent magnets; the generator electromagnetic parameters as well as the design optimization. The focus is on the generator design with a fractional slot non-overlapping winding placed into open stator slots. This is an a priori selection to guarantee easy manufacturing of the LC winding. A thermal analysis of the LC DD-PMSG based on a lumped parameter thermal model takes place with the ambition of evaluating the generator thermal performance. The thermal model was adapted to take into account the uneven copper loss distribution resulting from the skin effect as well as the effect of temperature on the copper winding resistance and the thermophysical properties of the coolant. The developed lumpedparameter thermal model and the analytical calculation of the magnetic field distribution can both be integrated with the presented algorithm to optimize an LC DD-PMSG design. Based on an instrumented small prototype with liquid-cooled tooth-coils, the following targets have been achieved: experimental determination of the performance of the direct liquid cooling of the stator winding and validating the temperatures predicted by an analytical thermal model; proving the feasibility of manufacturing the liquid-cooled tooth-coil winding; moreover, demonstration of the objectives of the project to potential customers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanent magnet synchronous machines with fractional-slot non-overlapping windings (FSPMSM), also known as tooth-coil winding permanent magnet synchronous machines (TCW PMSM), have been under intensive research during the latest decade. There are many optimization routines explained and implemented in the literature in order to improve the characteristics of this machine type. This paper introduces a new technique for torque ripple minimization in TCW PMSM. The source of torque harmonics is also described. The low order torque harmonics can be harmful for a variety of applications, such as direct drive wind generators, direct drive light vehicle electrical motors, and for some high precision servo applications. The reduction of the torque ripple harmonics with the lowest orders (6th and 12th) is realized by machine geometry optimization technique using finite element analysis (FEA). The presented optimization technique includes the stator geometry adjustment in TCW PMSMs with rotor surface permanent magnets and with rotor embedded permanent magnets. Influence of the permanent magnet skewing on the torque ripple reduction and cogging torque elimination was also investigated. It was implemented separately and together with the stator optimization technique. As a result, the reduction of some torque ripple harmonics was attained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.