21 resultados para Design problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is a survey on values related to entrepreneurship education and a participatory action research on entrepreneurship education curricula in teacher education. Research problems, rising from the practical development work, were solved by several methods, following the principles of design-based research. Values related to entrepreneurship education were studied among teachers, headmasters, teacher educators, researchers and officers in the field of entrepreneurship education in 16 European Union countries. Fifteen most important values related to entrepreneurship education were listed based on two qualitative surveys (N 124 and N 66). Values were also surveyed among Finnish teacher trainees (N 71). Results of the surveys show that the values given by the teacher trainees did not differ much from the ones given by the professionals already working in the field. Subsequently, emergence of these values was studied in documents that steer education. The values gathered in the surveys did not occur in the documents to a substantial degree. Development of entrepreneurship education curricula in teacher education was conducted by means of participatory action research. The development project gathered 55 teacher trainers from 15 teacher education organisations in Finland. The starting point of the phenomenon based project (see Annala and Mäkinen 2011) was the activity plan created for developing entrepreneurship education curricula. During the project, the learning of the teacher educators proceeded in a balanced way as brightening visions, stronger motivation, increasing understanding and new practices, following Shulman and Shulman’s model (2004). Goals of the development project were set to each teacher educator acquiring basic knowledge on entrepreneurship education, organization of obligatory courses on entrepreneurship education, and making entrepreneurship education a cross-curricular theme in teacher education. The process increased the understanding and motivation of teacher educators to develop and teach entrepreneurship education. It also facilitated collaboration as well as creating visions on entrepreneurship education. Based on the results, the concept of enterprisingness was defined, and recommendations were given for developing curricula in entrepreneurship education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to various advantages such as flexibility, scalability and updatability, software intensive systems are increasingly embedded in everyday life. The constantly growing number of functions executed by these systems requires a high level of performance from the underlying platform. The main approach to incrementing performance has been the increase of operating frequency of a chip. However, this has led to the problem of power dissipation, which has shifted the focus of research to parallel and distributed computing. Parallel many-core platforms can provide the required level of computational power along with low power consumption. On the one hand, this enables parallel execution of highly intensive applications. With their computational power, these platforms are likely to be used in various application domains: from home use electronics (e.g., video processing) to complex critical control systems. On the other hand, the utilization of the resources has to be efficient in terms of performance and power consumption. However, the high level of on-chip integration results in the increase of the probability of various faults and creation of hotspots leading to thermal problems. Additionally, radiation, which is frequent in space but becomes an issue also at the ground level, can cause transient faults. This can eventually induce a faulty execution of applications. Therefore, it is crucial to develop methods that enable efficient as well as resilient execution of applications. The main objective of the thesis is to propose an approach to design agentbased systems for many-core platforms in a rigorous manner. When designing such a system, we explore and integrate various dynamic reconfiguration mechanisms into agents functionality. The use of these mechanisms enhances resilience of the underlying platform whilst maintaining performance at an acceptable level. The design of the system proceeds according to a formal refinement approach which allows us to ensure correct behaviour of the system with respect to postulated properties. To enable analysis of the proposed system in terms of area overhead as well as performance, we explore an approach, where the developed rigorous models are transformed into a high-level implementation language. Specifically, we investigate methods for deriving fault-free implementations from these models into, e.g., a hardware description language, namely VHDL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vast majority of our contemporary society owns a mobile phone, which has resulted in a dramatic rise in the amount of networked computers in recent years. Security issues in the computers have followed the same trend and nearly everyone is now affected by such issues. How could the situation be improved? For software engineers, an obvious answer is to build computer software with security in mind. A problem with building software with security is how to define secure software or how to measure security. This thesis divides the problem into three research questions. First, how can we measure the security of software? Second, what types of tools are available for measuring security? And finally, what do these tools reveal about the security of software? Measuring tools of these kind are commonly called metrics. This thesis is focused on the perspective of software engineers in the software design phase. Focus on the design phase means that code level semantics or programming language specifics are not discussed in this work. Organizational policy, management issues or software development process are also out of the scope. The first two research problems were studied using a literature review while the third was studied using a case study research. The target of the case study was a Java based email server called Apache James, which had details from its changelog and security issues available and the source code was accessible. The research revealed that there is a consensus in the terminology on software security. Security verification activities are commonly divided into evaluation and assurance. The focus of this work was in assurance, which means to verify one’s own work. There are 34 metrics available for security measurements, of which five are evaluation metrics and 29 are assurance metrics. We found, however, that the general quality of these metrics was not good. Only three metrics in the design category passed the inspection criteria and could be used in the case study. The metrics claim to give quantitative information on the security of the software, but in practice they were limited to evaluating different versions of the same software. Apart from being relative, the metrics were unable to detect security issues or point out problems in the design. Furthermore, interpreting the metrics’ results was difficult. In conclusion, the general state of the software security metrics leaves a lot to be desired. The metrics studied had both theoretical and practical issues, and are not suitable for daily engineering workflows. The metrics studied provided a basis for further research, since they pointed out areas where the security metrics were necessary to improve whether verification of security from the design was desired.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing emphasis on energy efficiency is starting to yield results in the reduction in greenhouse gas emissions; however, the effort is still far from sufficient. Therefore, new technical solutions that will enhance the efficiency of power generation systems are required to maintain the sustainable growth rate, without spoiling the environment. A reduction in greenhouse gas emissions is only possible with new low-carbon technologies, which enable high efficiencies. The role of the rotating electrical machine development is significant in the reduction of global emissions. A high proportion of the produced and consumed electrical energy is related to electrical machines. One of the technical solutions that enables high system efficiency on both the energy production and consumption sides is high-speed electrical machines. This type of electrical machines has a high system overall efficiency, a small footprint, and a high power density compared with conventional machines. Therefore, high-speed electrical machines are favoured by the manufacturers producing, for example, microturbines, compressors, gas compression applications, and air blowers. High-speed machine technology is challenging from the design point of view, and a lot of research is in progress both in academia and industry regarding the solution development. The solid technical basis is of importance in order to make an impact in the industry considering the climate change. This work describes the multidisciplinary design principles and material development in high-speed electrical machines. First, high-speed permanent magnet synchronous machines with six slots, two poles, and tooth-coil windings are discussed in this doctoral dissertation. These machines have unique features, which help in solving rotordynamic problems and reducing the manufacturing costs. Second, the materials for the high-speed machines are discussed in this work. The materials are among the key limiting factors in electrical machines, and to overcome this limit, an in-depth analysis of the material properties and behavior is required. Moreover, high-speed machines are sometimes operating in a harsh environment because they need to be as close as possible to the rotating tool and fully exploit their advantages. This sets extra requirements for the materials applied.