18 resultados para Data recovery (Computer science)
Resumo:
In the field of molecular biology, scientists adopted for decades a reductionist perspective in their inquiries, being predominantly concerned with the intricate mechanistic details of subcellular regulatory systems. However, integrative thinking was still applied at a smaller scale in molecular biology to understand the underlying processes of cellular behaviour for at least half a century. It was not until the genomic revolution at the end of the previous century that we required model building to account for systemic properties of cellular activity. Our system-level understanding of cellular function is to this day hindered by drastic limitations in our capability of predicting cellular behaviour to reflect system dynamics and system structures. To this end, systems biology aims for a system-level understanding of functional intraand inter-cellular activity. Modern biology brings about a high volume of data, whose comprehension we cannot even aim for in the absence of computational support. Computational modelling, hence, bridges modern biology to computer science, enabling a number of assets, which prove to be invaluable in the analysis of complex biological systems, such as: a rigorous characterization of the system structure, simulation techniques, perturbations analysis, etc. Computational biomodels augmented in size considerably in the past years, major contributions being made towards the simulation and analysis of large-scale models, starting with signalling pathways and culminating with whole-cell models, tissue-level models, organ models and full-scale patient models. The simulation and analysis of models of such complexity very often requires, in fact, the integration of various sub-models, entwined at different levels of resolution and whose organization spans over several levels of hierarchy. This thesis revolves around the concept of quantitative model refinement in relation to the process of model building in computational systems biology. The thesis proposes a sound computational framework for the stepwise augmentation of a biomodel. One starts with an abstract, high-level representation of a biological phenomenon, which is materialised into an initial model that is validated against a set of existing data. Consequently, the model is refined to include more details regarding its species and/or reactions. The framework is employed in the development of two models, one for the heat shock response in eukaryotes and the second for the ErbB signalling pathway. The thesis spans over several formalisms used in computational systems biology, inherently quantitative: reaction-network models, rule-based models and Petri net models, as well as a recent formalism intrinsically qualitative: reaction systems. The choice of modelling formalism is, however, determined by the nature of the question the modeler aims to answer. Quantitative model refinement turns out to be not only essential in the model development cycle, but also beneficial for the compilation of large-scale models, whose development requires the integration of several sub-models across various levels of resolution and underlying formal representations.
Resumo:
Many-core systems provide a great potential in application performance with the massively parallel structure. Such systems are currently being integrated into most parts of daily life from high-end server farms to desktop systems, laptops and mobile devices. Yet, these systems are facing increasing challenges such as high temperature causing physical damage, high electrical bills both for servers and individual users, unpleasant noise levels due to active cooling and unrealistic battery drainage in mobile devices; factors caused directly by poor energy efficiency. Power management has traditionally been an area of research providing hardware solutions or runtime power management in the operating system in form of frequency governors. Energy awareness in application software is currently non-existent. This means that applications are not involved in the power management decisions, nor does any interface between the applications and the runtime system to provide such facilities exist. Power management in the operating system is therefore performed purely based on indirect implications of software execution, usually referred to as the workload. It often results in over-allocation of resources, hence power waste. This thesis discusses power management strategies in many-core systems in the form of increasing application software awareness of energy efficiency. The presented approach allows meta-data descriptions in the applications and is manifested in two design recommendations: 1) Energy-aware mapping 2) Energy-aware execution which allow the applications to directly influence the power management decisions. The recommendations eliminate over-allocation of resources and increase the energy efficiency of the computing system. Both recommendations are fully supported in a provided interface in combination with a novel power management runtime system called Bricktop. The work presented in this thesis allows both new- and legacy software to execute with the most energy efficient mapping on a many-core CPU and with the most energy efficient performance level. A set of case study examples demonstrate realworld energy savings in a wide range of applications without performance degradation.
Resumo:
Human-Centered Design (HCD) is a well-recognized approach to the design of interactive computing systems that supports everyday and professional lives of people. To that end, the HCD approach put central emphasis on the explicit understanding of users and context of use by involving users throughout the entire design and development process. With mobile computing, the diversity of users as well as the variety in the spatial, temporal, and social settings of the context of use has notably expanded, which affect the effort of interaction designers to understand users and context of use. The emergence of the mobile apps era in 2008 as a result of structural changes in the mobile industry and the profound enhanced capabilities of mobile devices, further intensify the embeddedness of technology in the daily life of people and the challenges that interaction designers face to cost-efficiently understand users and context of use. Supporting interaction designers in this challenge requires understanding of their existing practice, rationality, and work environment. The main objective of this dissertation is to contribute to interaction design theories by generating understanding on the HCD practice of mobile systems in the mobile apps era, as well as to explain the rationality of interaction designers in attending to users and context of use. To achieve that, a literature study is carried out, followed by a mixed-methods research that combines multiple qualitative interview studies and a quantitative questionnaire study. The dissertation contributes new insights regarding the evolving HCD practice at an important time of transition from stationary computing to mobile computing. Firstly, a gap is identified between interaction design as practiced in research and in the industry regarding the involvement of users in context; whereas the utilization of field evaluations, i.e. in real-life environments, has become more common in academic projects, interaction designers in the industry still rely, by large, on lab evaluations. Secondly, the findings indicate on new aspects that can explain this gap and the rationality of interaction designers in the industry in attending to users and context; essentially, the professional-client relationship was found to inhibit the involvement of users, while the mental distance between practitioners and users as well as the perceived innovativeness of the designed system are suggested in explaining the inclination to study users in situ. Thirdly, the research contributes the first explanatory model on the relation between the organizational context and HCD; essentially, innovation-focused organizational strategies greatly affect the cost-effective usage of data on users and context of use. Last, the findings suggest a change in the nature of HCD in the mobile apps era, at least with universal consumer systems; evidently, the central attention on the explicit understanding of users and context of use shifts from an early requirements phase and continual activities during design and development to follow-up activities. That is, the main effort to understand users is by collecting data on their actual usage of the system, either before or after the system is deployed. The findings inform both researchers and practitioners in interaction design. In particular, the dissertation suggest on action research as a useful approach to support interaction designers and further inform theories on interaction design. With regard to the interaction design practice, the dissertation highlights strategies that encourage a more cost-effective user- and context-informed interaction design process. With the continual embeddedness of computing into people’s life, e.g. with wearable devices and connected car systems, the dissertation provides a timely and valuable view on the evolving humancentered design.