20 resultados para Data Protection Directive
Resumo:
Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.
Resumo:
A postgraduate seminar series with a title Critical Infrastructure Protection against Cyber Threats held at the Department of Military Technology of the National Defence University in the fall of 2013 and 2014. This book is a collection of some of talks that were presented in the seminar. The papers address origin of critical infrastructure protection, wargaming cyberwar in critical infrastructure defence, cyber-target categorization, supervisory control and data acquisition systems vulnerabilities, electric power as critical infrastructure, improving situational awareness of critical infrastructure and trust based situation awareness in high security cloud environment. This set of papers tries to give some insight to current issues of the network-centric critical infrastructure protection. The seminar has always made a publication of the papers but this has been an internal publication of the Finnish Defence Forces and has not hindered publication of the papers in international conferences. Publication of these papers in peer reviewed conferences has indeed been always the goal of the seminar, since it teaches writing conference level papers. We still hope that an internal publication in the department series is useful to the Finnish Defence Forces by offering an easy access to these papers.
Resumo:
In November 2013 the European Commission issued the “Proposal for a Directive on the European Parliament and of the Council on the protection of undisclosed know-how and business information (trade secrets) against their unlawful acquisition, use and disclosure” (referred to as “TSD”). The TSD offers minimum harmonisation and aims at promoting sharing of knowledge, and the exploitation of innovations on the Internal Market. The European Parliament adopted the TSD on April 14, 2016 and the EU Member States will have two years to implement it. The TSD includes a harmonised definition of a trade secret that builds on the definition provided in Article 39 of the TRIPS Agreement. Moreover, it also ensures the freedom of expression and information and the protection of whistle-blowers. Appropriate means of actions and remedies against unlawful acquisition, use and disclosure of trade secrets are also included, such as provisional and pecuniary measures, injunctions and corrective measures or allocation of damages. This study examines the protection of trade secrets in the course of litigation regulated in Article 9 of the TSD. Currently, the protection of trade secrets within the EU is fragmented especially in this regard, which makes companies reluctant to resort to litigation when a trade secret has unlawfully been misappropriated or it is suspected that a trade secret is being misused. The regulations in Article 9 expand only to the hearing in court. Such protection is welcomed and a step in the right direction. However, in my study I have found that in order for the protection to be sufficient there is a need to further establish measures to protect trade secrets during the entire process, from the filing of the claim to the end when the judgement is given. Consequently, I also discuss different measures that could be used to strengthen the protection of trade secrets before the hearing in court, as evidence are gathered.
Resumo:
In November 2013 the European Commission issued the “Proposal for a Directive on the European Parliament and of the Council on the protection of undisclosed know-how and business information (trade secrets) against their unlawful acquisition, use and disclosure” (referred to as “TSD”). The TSD offers minimum harmonisation and aims at promoting sharing of knowledge, and the exploitation of innovations on the Internal Market. The European Parliament adopted the TSD on April 14, 2016 and the EU Member States will have two years to implement it. The TSD includes a harmonised definition of a trade secret that builds on the definition provided in Article 39 of the TRIPS Agreement. Moreover, it also ensures the freedom of expression and information and the protection of whistle-blowers. Appropriate means of actions and remedies against unlawful acquisition, use and disclosure of trade secrets are also included, such as provisional and pecuniary measures, injunctions and corrective measures or allocation of damages. This study examines the protection of trade secrets in the course of litigation regulated in Article 9 of the TSD. Currently, the protection of trade secrets within the EU is fragmented especially in this regard, which makes companies reluctant to resort to litigation when a trade secret has unlawfully been misappropriated or it is suspected that a trade secret is being misused. The regulations in Article 9 expand only to the hearing in court. Such protection is welcomed and a step in the right direction. However, in my study I have found that in order for the protection to be sufficient there is a need to further establish measures to protect trade secrets during the entire process, from the filing of the claim to the end when the judgement is given. Consequently, I also discuss different measures that could be used to strengthen the protection of trade secrets before the hearing in court, as evidence are gathered.