25 resultados para DOUBLE-SLIT EXPERIMENTS
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
The power rating of wind turbines is constantly increasing; however, keeping the voltage rating at the low-voltage level results in high kilo-ampere currents. An alternative for increasing the power levels without raising the voltage level is provided by multiphase machines. Multiphase machines are used for instance in ship propulsion systems, aerospace applications, electric vehicles, and in other high-power applications including wind energy conversion systems. A machine model in an appropriate reference frame is required in order to design an efficient control for the electric drive. Modeling of multiphase machines poses a challenge because of the mutual couplings between the phases. Mutual couplings degrade the drive performance unless they are properly considered. In certain multiphase machines there is also a problem of high current harmonics, which are easily generated because of the small current path impedance of the harmonic components. However, multiphase machines provide special characteristics compared with the three-phase counterparts: Multiphase machines have a better fault tolerance, and are thus more robust. In addition, the controlled power can be divided among more inverter legs by increasing the number of phases. Moreover, the torque pulsation can be decreased and the harmonic frequency of the torque ripple increased by an appropriate multiphase configuration. By increasing the number of phases it is also possible to obtain more torque per RMS ampere for the same volume, and thus, increase the power density. In this doctoral thesis, a decoupled d–q model of double-star permanent-magnet (PM) synchronous machines is derived based on the inductance matrix diagonalization. The double-star machine is a special type of multiphase machines. Its armature consists of two three-phase winding sets, which are commonly displaced by 30 electrical degrees. In this study, the displacement angle between the sets is considered a parameter. The diagonalization of the inductance matrix results in a simplified model structure, in which the mutual couplings between the reference frames are eliminated. Moreover, the current harmonics are mapped into a reference frame, in which they can be easily controlled. The work also presents methods to determine the machine inductances by a finite-element analysis and by voltage-source inverters on-site. The derived model is validated by experimental results obtained with an example double-star interior PM (IPM) synchronous machine having the sets displaced by 30 electrical degrees. The derived transformation, and consequently, the decoupled d–q machine model, are shown to model the behavior of an actual machine with an acceptable accuracy. Thus, the proposed model is suitable to be used for the model-based control design of electric drives consisting of double-star IPM synchronous machines.
Resumo:
The purpose of the Master’s thesis research is to study and disseminate the best practices of international double Master’s degree programmes organization, implementation and development. The given research is focused on two main areas: motivation of higher education institutions to start double degree programmes and best practices of double degree programme design and implementation from the perspective of building joint curriculum and organizing balanced mobility and development of existing programmes in terms of increasing their quality and attractiveness. This is a case study of the double degree programmes between Russian and European universities. The study findings reveal good developments in the field of double degree cooperation between Russian and European universities and a high motivation from both parties. The research depicts different models of building a joint curriculum and organizing academic mobility. The following areas could be outlined as development points for double degree programmes: - Personal interest and commitment of organizers of double degree programmes; - Comprehensive agreement between partners on different aspects and practicalities of the double degree programme implementation; - Promotion towards more balanced student participation and two-way mobility; - Foreign language skills improvement for students and university staff; - Joint strategy and actions in marketing and quality assurance; - Involvement of international companies; - Wider usage of e-learning technology.
Resumo:
Ionic liquids, ILs, have recently been studied with accelerating interest to be used for a deconstruction/fractionation, dissolution or pretreatment processing method of lignocellulosic biomass. ILs are usually utilized combined with heat. Regarding lignocellulosic recalcitrance toward fractionation and IL utilization, most of the studies concern IL utilization in the biomass fermentation process prior to the enzymatic hydrolysis step. It has been demonstrated that IL-pretreatment gives more efficient hydrolysis of the biomass polysaccharides than enzymatic hydrolysis alone. Both cellulose (especially cellulose) and lignin are very resistant towards fractionation and even dissolution methods. As an example, it can be mentioned that softwood, hardwood and grass-type plant species have different types of lignin structures leading to the fact that softwood lignin (guaiacyl lignin dominates) is the most difficult to solubilize or chemically disrupt. In addition to the known conventional biomass processing methods, several ILs have also been found to efficiently dissolve either cellulose and/or wood samples – different ILs are suitable for different purposes. An IL treatment of wood usually results in non-fibrous pulp, where lignin is not efficiently separated and wood components are selectively precipitated, as cellulose is not soluble or degradable in ionic liquids under mild conditions. Nevertheless, new ILs capable of rather good fractionation performance have recently emerged. The capability of the IL to dissolve or deconstruct wood or cellulose depends on several factors, (e.g. sample origin, the particle size of the biomass, mechanical treatments as pulverization, initial biomassto-IL ratio, water content of the biomass, possible impurities of IL, reaction conditions, temperature etc). The aim of this study was to obtain (fermentable) saccharides and other valuable chemicals from wood by a combined heat and IL-treatment. Thermal treatments alone contribute to the degradation of polysaccharides (e.g. 150 °C alone is said to cause the degradation of polysaccharides), thus temperatures below that should be used, if the research interest lies on the IL effectiveness. On the other hand, the efficiency of the IL-treatment can also be enhanced to combine other treatment methods, (e.g. microwave heating). The samples of spruce, pine and birch sawdust were treated with either 1-Ethyl-3-methylimidazolium chloride, Emim Cl, or 1-Ethyl-3-methylimidazolium acetate, Emim Ac, (or with ionized water for comparison) at various temperatures (where focus was between 80 and 120 °C). The samples were withdrawn at fixed time intervals (the main interest treatment time area lied between 0 and 100 hours). Double experiments were executed. The selected mono- and disaccharides, as well as their known degradation products, 5-hydroxymethylfurfural, 5-HMF, and furfural were analyzed with capillary electrophoresis, CE, and high-performance liquid chromatography, HPLC. Initially, even GC and GC-MS were utilized. Galactose, glucose, mannose and xylose were the main monosaccharides that were present in the wood samples exposed to ILs at elevated temperatures; in addition, furfural and 5-HMF were detected; moreover, the quantitative amount of the two latter ones were naturally increasing in line with the heating time or the IL:wood ratio.
Resumo:
Double grade S420MH/S355J2H – rakenneputki on Ruukin kylmämuovattujen rakenneputkien vakioteräslaji. Se voidaan mitoittaa joko lujuusluokan S355 tai S420 mukaisesti. Teräslajin S355 mukaisesti mitoitettaessa on suunnittelu yksinkertaista. Painonsäästöä ja pidennettyjä jännevälejä haluttaessa käytetään lujuusluokan S420 mukaista mitoitusta. Työn tavoitteena oli selvittää kylmämuovattujen teräsrakenneputkien todellinen puristuskestävyys. Eurocode 3:n mukaan kylmämuovatut teräsrakenneputket kuuluvat nurjahduskäyrälle c. Tutkimukseen valittiin viisi eri profiilia olevaa rakenneputkea, joiden poikkileikkausluokat olivat 1, 2, 3 ja 4. Käytettäessä rakenneputkia puristussauvoina, on teräksen käyttö tehokkainta poikkileikkausluokassa 3, lähellä poikkileikkausluokkaa 4. Rakenneputkista laskettiin muunnetun hoikkuuden arvoilla 0.1, 0.5, 1.0 ja 1.5 koesauvojen pituudet kaikille profiileille. Valmistettiin kolme samanlaista koesauvaa jokaisesta koosta ja puristuskokeita suoritettiin yhteensä 57 kappaletta. Koesauvojen todelliset pituudet, alkukäyryydet ja poikkileikkaukset mitattiin. Ainestodistuksista saatiin materiaalin todelliset lujuudet. Laskettiin Eurocode 3:n mukaisesti kestävyydet nurjahduskäyrille a, b ja c. Laskennallisia kestävyyksiä verrattiin puristuskokeiden tuloksiin. Puristuskokeiden tulosten perusteella voidaan b-käyrää pitää oikeana profiileille 100x100x3, 150,150x5 ja 200x200x6. Profiili 150x150x5 kuuluu poikkileikkausluokkaan 2. Profiilit 100x100x3 ja 200x200x6 kuuluvat poikkileikkausluokkaan 4. Profiili 50x50x2 kuuluu nurjahduskäyrälle c. Profiilin poikkileikkausluokka on 1 ja aiemmat tutkimukset tukevat nurjahduskäyrän c käyttöä. Profiilista 300x300x8.8 ei saatu testattua täyttä sarjaa sen suuren kapasiteetin rikottua testilaitteiston, mutta puristuskokeiden perusteella se kuuluu nurjahduskäyrälle b. Profiili kuuluu poikkileikkausluokkaan 4.
Resumo:
In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.
Resumo:
This thesis is made in cooperation with Laboratory of Steel Structures and the steel company SSAB. Maximization of the benefits of high-strength steel usually requires the usage of thin wall thicknesses. This means the failures related to buckling, distortion and warping stand out. One must be aware of these phenomena to design thin-walled structures stressed with forces such as torsional loading. It is also important to take into account small stress ranges when evaluating the accurate fatigue strength of structures. The objective of this thesis is to clarify the theory of the uniform and non-uniform torsion. This paper focuses on warping due to the non-uniform torsion in double symmetric box girder and structural hollow section. The arisen stress states are explained and researched using the finite element method. Another research target is the distortion in double symmetric box girder due to torsion, and the restraining effect of transverse diaphragms at the load end. Multiple transverse diaphragms are used to study more efficient restraining against warping and distortion than a common one end plate structure.
Resumo:
Medium-voltage motor drives extend the power rating of AC motor drives in industrial applications. Multilevel converters are gaining an ever-stronger foothold in this field. This doctoral dissertation introduces a new topology to the family of modular multilevel converters: the modular double-cascade converter. The modularity of the converter is enabled by the application of multiwinding mediumfrequency isolation transformers. Owing to the innovative transformer link, the converter presents many advantageous properties at a concept level: modularity, high input and output power quality, small footprint, and wide variety of applications, among others. Further, the research demonstrates that the transformer link also plays a key role in the disadvantages of the topology. An extensive simulation study on the new converter is performed. The focus of the simulation study is on the development of control algorithms and the feasibility of the topology. In particular, the circuit and control concepts used in the grid interface, the coupling configurations of the load inverter, and the transformer link operation are thoroughly investigated. Experimental results provide proof-of-concept results on the operation principle of the converter. This work concludes a research collaboration project on multilevel converters between LUT and Vacon Plc. The project was active from 2009 until 2014.
Resumo:
The purpose of this thesis is to study the scalability of small break LOCA experiments. The study is performed on the experimental data, as well as on the results of thermal hydraulic computation performed on TRACE code. The SBLOCA experiments were performed on PACTEL facility situated at LUT. The temporal scaling of the results was done by relating the total coolant mass in the system with the initial break mass flow and using the quotient to scale the experiment time. The results showed many similarities in the behaviour of pressure and break mass flow between the experiments.