20 resultados para Cyber physical systems
Resumo:
Many-core systems provide a great potential in application performance with the massively parallel structure. Such systems are currently being integrated into most parts of daily life from high-end server farms to desktop systems, laptops and mobile devices. Yet, these systems are facing increasing challenges such as high temperature causing physical damage, high electrical bills both for servers and individual users, unpleasant noise levels due to active cooling and unrealistic battery drainage in mobile devices; factors caused directly by poor energy efficiency. Power management has traditionally been an area of research providing hardware solutions or runtime power management in the operating system in form of frequency governors. Energy awareness in application software is currently non-existent. This means that applications are not involved in the power management decisions, nor does any interface between the applications and the runtime system to provide such facilities exist. Power management in the operating system is therefore performed purely based on indirect implications of software execution, usually referred to as the workload. It often results in over-allocation of resources, hence power waste. This thesis discusses power management strategies in many-core systems in the form of increasing application software awareness of energy efficiency. The presented approach allows meta-data descriptions in the applications and is manifested in two design recommendations: 1) Energy-aware mapping 2) Energy-aware execution which allow the applications to directly influence the power management decisions. The recommendations eliminate over-allocation of resources and increase the energy efficiency of the computing system. Both recommendations are fully supported in a provided interface in combination with a novel power management runtime system called Bricktop. The work presented in this thesis allows both new- and legacy software to execute with the most energy efficient mapping on a many-core CPU and with the most energy efficient performance level. A set of case study examples demonstrate realworld energy savings in a wide range of applications without performance degradation.
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
As reactive extraction grown more and more popular in a variety of technological applications, optimizing its performance becomes more and more important. The process of complex formation is affected by a great number of both physical and chemical properties of all the components involved, and sometimes their interference with one another makes improving the effectiveness of such processes very difficult. In this Master’s Theses, the processes of complex formation between the aqueous phase - represented by copper sulfate water solution, and organic phase – represented by Acorga M5640 solvent extractor, were studied in order to establish the effect these components have on reactive extraction performance and to determine which step is bottlenecking the process the most.
Resumo:
The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.
Resumo:
Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.