19 resultados para Covariance
Resumo:
Optimization of quantum measurement processes has a pivotal role in carrying out better, more accurate or less disrupting, measurements and experiments on a quantum system. Especially, convex optimization, i.e., identifying the extreme points of the convex sets and subsets of quantum measuring devices plays an important part in quantum optimization since the typical figures of merit for measuring processes are affine functionals. In this thesis, we discuss results determining the extreme quantum devices and their relevance, e.g., in quantum-compatibility-related questions. Especially, we see that a compatible device pair where one device is extreme can be joined into a single apparatus essentially in a unique way. Moreover, we show that the question whether a pair of quantum observables can be measured jointly can often be formulated in a weaker form when some of the observables involved are extreme. Another major line of research treated in this thesis deals with convex analysis of special restricted quantum device sets, covariance structures or, in particular, generalized imprimitivity systems. Some results on the structure ofcovariant observables and instruments are listed as well as results identifying the extreme points of covariance structures in quantum theory. As a special case study, not published anywhere before, we study the structure of Euclidean-covariant localization observables for spin-0-particles. We also discuss the general form of Weyl-covariant phase-space instruments. Finally, certain optimality measures originating from convex geometry are introduced for quantum devices, namely, boundariness measuring how ‘close’ to the algebraic boundary of the device set a quantum apparatus is and the robustness of incompatibility quantifying the level of incompatibility for a quantum device pair by measuring the highest amount of noise the pair tolerates without becoming compatible. Boundariness is further associated to minimum-error discrimination of quantum devices, and robustness of incompatibility is shown to behave monotonically under certain compatibility-non-decreasing operations. Moreover, the value of robustness of incompatibility is given for a few special device pairs.
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Resumo:
For my Licentiate thesis, I conducted research on risk measures. Continuing with this research, I now focus on capital allocation. In the proportional capital allocation principle, the choice of risk measure plays a very important part. In the chapters Introduction and Basic concepts, we introduce three definitions of economic capital, discuss the purpose of capital allocation, give different viewpoints of capital allocation and present an overview of relevant literature. Risk measures are defined and the concept of coherent risk measure is introduced. Examples of important risk measures are given, e. g., Value at Risk (VaR), Tail Value at Risk (TVaR). We also discuss the implications of dependence and review some important distributions. In the following chapter on Capital allocation we introduce different principles for allocating capital. We prefer to work with the proportional allocation method. In the following chapter, Capital allocation based on tails, we focus on insurance business lines with heavy-tailed loss distribution. To emphasize capital allocation based on tails, we define the following risk measures: Conditional Expectation, Upper Tail Covariance and Tail Covariance Premium Adjusted (TCPA). In the final chapter, called Illustrative case study, we simulate two sets of data with five insurance business lines using Normal copulas and Cauchy copulas. The proportional capital allocation is calculated using TCPA as risk measure. It is compared with the result when VaR is used as risk measure and with covariance capital allocation. In this thesis, it is emphasized that no single allocation principle is perfect for all purposes. When focusing on the tail of losses, the allocation based on TCPA is a good one, since TCPA in a sense includes features of TVaR and Tail covariance.
Resumo:
Various researches in the field of econophysics has shown that fluid flow have analogous phenomena in financial market behavior, the typical parallelism being delivered between energy in fluids and information on markets. However, the geometry of the manifold on which market dynamics act out their dynamics (corporate space) is not yet known. In this thesis, utilizing a Seven year time series of prices of stocks used to compute S&P500 index on the New York Stock Exchange, we have created local chart to the corporate space with the goal of finding standing waves and other soliton like patterns in the behavior of stock price deviations from the S&P500 index. By first calculating the correlation matrix of normalized stock price deviations from the S&P500 index, we have performed a local singular value decomposition over a set of four different time windows as guides to the nature of patterns that may emerge. I turns out that in almost all cases, each singular vector is essentially determined by relatively small set of companies with big positive or negative weights on that singular vector. Over particular time windows, sometimes these weights are strongly correlated with at least one industrial sector and certain sectors are more prone to fast dynamics whereas others have longer standing waves.