17 resultados para Constant pressure test


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis was to investigate the compression of filter cakes at high filtration pressures with five different test materials and to compare the energy consumption of high pressure compression with the energy consumption of thermal drying. The secondary target of this study was to investigate the particle deformation of test materials during filtration and compression. Literature part consists of basic theory of filtration and compression and of the basic parameters that influence the filtration process. There is also a brief description about all of the test materials including their properties and their industrial production and processing. Theoretical equations for calculating the energy consumptions of the filtrations at different conditions are also presented. At the beginning of the experiments at experimental part, the basic filtration tests were done with all the five test materials. Filtration tests were made at eight different pressures, from 6 bars up to 100 bars, by using piston press pressure filter. Filtration tests were then repeated by using a cylinder with smaller slurry volume than in the first series of filtration tests. Separate filtration tests were also done for investigating the deformation of solid particles during filtration and for finding the optimal curve for raising the filtration pressure. Energy consumption differences between high pressure filtration and ideal thermal drying process were done partly experimentally and partly by using theoretical calculation equations. By comparing these two water removal methods, the optimal ranges for their use were found considering their energy efficiency. The results of the measurements shows that the filtration rate increased and the moisture content of the filter cakes decreased as the filtration pressure was increased. Also the porosity of the filter cakes mainly decreased when the filtration pressure was increased. Particle deformation during the filtration was observed only with coal particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enzymatic hydrolysis of lignocellulosic polymers is likely to become one of the key technologies enabling industrial production of liquid biofuels and chemicals from lignocellulosic biomass. Certain types of enzymes are able to hydrolyze cellulose and hemicellulose polymers to shorter units and finally to sugar monomers. These monomeric sugars are environmentally acceptable carbon sources for the production of liquid biofuels, such as bioethanol, and other chemicals, such as organic acids. Liquid biofuels in particular have been shown to contribute to the reduction of net emissions of greenhouse gases. The solid residue of enzymatic hydrolysis is composed mainly of lignin and partially degraded fibers, while the liquid phase contains the produced sugars. It is usually necessary to separate these two phases at some point after the hydrolysis stage. Pressure filtration is an efficient technique for this separation. Solid-liquid separation of biomass suspensions is difficult, because biomass solids are able to retain high amounts of water, which cannot be readily liberated by mechanical separation techniques. Most importantly, the filter cakes formed from biomaterials are compressible, which ultimately means that the separation may not be much improved by increasing the filtration pressure. The use of filter aids can therefore facilitate the filtration significantly. On the other hand, the upstream process conditions have a major influence on the filtration process. This thesis investigates how enzymatic hydrolysis and related process conditions affect the filtration properties of a cardboard suspension. The experimental work consists of pressure filtration and characterization of hydrolysates. The study provides novel information about both issues, as the relationship between enzymatic hydrolysis conditions and subsequent filtration properties has so far not been considered in academic studies. The results of the work reveal that the final degree of hydrolysis is an important factor in the filtration stage. High hydrolysis yield generally increases the average specific cake resistance. Mixing during the hydrolysis stage resulted in undefined changes in the physical properties of the solid residue, causing a high filtration resistance when the mixing intensity was high. Theoretical processing of the mixing data led to an interesting observation: the average specific cake resistance was observed to be linearly proportional to the mixer shear stress. Another finding worth attention is that the size distributions of the solids did not change very dramatically during enzymatic hydrolysis. There was an observable size reduction during the first couple of hours, but after that the size reduction was minimal. Similarly, the size distribution of the suspended solids remained almost constant when the hydrolyzed suspension was subjected to intensive mixing. It was also found that the average specific cake resistance was successfully reduced by the use of filter aids. This reduction depended on the method of how the filter aids were applied. In order to obtain high filtration capacity, it is recommended to use the body feed mode, i.e. to mix the filter aid with the slurry prior to filtration. Regarding the quality of the filtrate, precoat filtration was observed to produce a clear filtrate with negligible suspended solids content, while the body feed filtrates were turbid, irrespective of which type of filter aid was used.