46 resultados para Camera Network, Image Processing, Compression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vuosi vuodelta kasvava tietokoneiden prosessointikyky on mahdollistanut harmaataso- ja RGB-värikuvia tarkempien spektrikuvien käsittelyn järjellisessä ajassa ilman suuria kustannuksia. Ongelmana on kuitenkin, ettei talletus- ja tiedonsiirtomedia ole kehittynyt prosessointikyvyn vauhdissa. Ratkaisu tähän ongelmaan on spektrikuvien tiivistäminen talletuksen ja tiedonsiirron ajaksi. Tässä työssä esitellään menetelmä, jossa spektrikuva tiivistetään kahdessa vaiheessa: ensin ryhmittelemällä itseorganisoituvan kartan (SOM) avulla ja toisessa vaiheessa jatketaan tiivistämistä perinteisin menetelmin. Saadut tiivistyssuhteet ovat merkittäviä vääristymän pysyessä siedettävänä. Työ on tehty Lappeenrannan teknillisen korkeakoulun Tietotekniikan osaston Tietojenkäsittelytekniikan tutkimuslaboratoriossa osana laajempaa kuvantiivistyksen tutkimushanketta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing development of the digital media has brought a new set of challenges with it. As images containing more than three wavelength bands, often called spectral images, are becoming a more integral part of everyday life, problems in the quality of the RGB reproduction from the spectral images have turned into an important area of research. The notion of image quality is often thought to comprise two distinctive areas – image quality itself and image fidelity, both dealing with similar questions, image quality being the degree of excellence of the image, and image fidelity the measure of the match of the image under study to the original. In this thesis, both image fidelity and image quality are considered, with an emphasis on the influence of color and spectral image features on both. There are very few works dedicated to the quality and fidelity of spectral images. Several novel image fidelity measures were developed in this study, which include kernel similarity measures and 3D-SSIM (structural similarity index). The kernel measures incorporate the polynomial, Gaussian radial basis function (RBF) and sigmoid kernels. The 3D-SSIM is an extension of a traditional gray-scale SSIM measure developed to incorporate spectral data. The novel image quality model presented in this study is based on the assumption that the statistical parameters of the spectra of an image influence the overall appearance. The spectral image quality model comprises three parameters of quality: colorfulness, vividness and naturalness. The quality prediction is done by modeling the preference function expressed in JNDs (just noticeable difference). Both image fidelity measures and the image quality model have proven to be effective in the respective experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increase of use of digital media the need for the methods of multimedia protection becomes extremely important. The number of the solutions to the problem from encryption to watermarking is large and is growing every year. In this work digital image watermarking is considered, specifically a novel method of digital watermarking of color and spectral images. An overview of existing methods watermarking of color and grayscale images is given in the paper. Methods using independent component analysis (ICA) for detection and the ones using discrete wavelet transform (DWT) and discrete cosine transform (DCT) are considered in more detail. A novel method of watermarking proposed in this paper allows embedding of a color or spectral watermark image into color or spectral image consequently and successful extraction of the watermark out of the resultant watermarked image. A number of experiments have been performed on the quality of extraction depending on the parameters of the embedding procedure. Another set of experiments included the test of the robustness of the algorithm proposed. Three techniques have been chosen for that purpose: median filter, low-pass filter (LPF) and discrete cosine transform (DCT), which are a part of a widely known StirMark - Image Watermarking Robustness Test. The study shows that the proposed watermarking technique is fragile, i.e. watermark is altered by simple image processing operations. Moreover, we have found that the contents of the image to be watermarked do not affect the quality of the extraction. Mixing coefficients, that determine the amount of the key and watermark image in the result, should not exceed 1% of the original. The algorithm proposed has proven to be successful in the task of watermark embedding and extraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Saimaa ringed seal is one of the most endangered seals in the world. It is a symbol of Lake Saimaa and a lot of effort have been applied to save it. Traditional methods of seal monitoring include capturing the animals and installing sensors on their bodies. These invasive methods for identifying can be painful and affect the behavior of the animals. Automatic identification of seals using computer vision provides a more humane method for the monitoring. This Master's thesis focuses on automatic image-based identification of the Saimaa ringed seals. This consists of detection and segmentation of a seal in an image, analysis of its ring patterns, and identification of the detected seal based on the features of the ring patterns. The proposed algorithm is evaluated with a dataset of 131 individual seals. Based on the experiments with 363 images, 81\% of the images were successfully segmented automatically. Furthermore, a new approach for interactive identification of Saimaa ringed seals is proposed. The results of this research are a starting point for future research in the topic of seal photo-identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this master’s thesis were to understand the importance of bubbling fluidized bed (BFB) conditions and to find out how digital image processing and acoustic emission technology can help in monitoring the bed quality. An acoustic emission (AE) measurement system and a bottom ash camera system were evaluated in acquiring information about the bed conditions. The theory part of the study describes the fundamentals of BFB boiler and evaluates the characteristics of bubbling bed. Causes and effects of bed material coarsening are explained. The ways and methods to monitor the behaviour of BFB are determined. The study introduces the operating principles of AE technology and digital image processing. The empirical part of the study describes an experimental arrangement and results of a case study at an industrial BFB boiler. Sand consumption of the boiler was reduced by optimization of bottom ash handling and sand feeding. Furthermore, data from the AE measurement system and the bottom ash camera system was collected. The feasibility of these two systems was evaluated. The particle size of bottom ash and the changes in particle size distribution were monitored during the test period. Neither of the systems evaluated was ready to serve in bed quality control accurately or fast enough. Particle size distributions according to the bottom ash camera did not correspond to the results of manual sieving. Comprehensive interpretation of the collected AE data requires much experience. Both technologies do have potential and with more research and development they may enable acquiring reliable and real-time information about the bed conditions. This information could help to maintain disturbance-free combustion process and to optimize bottom ash handling system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this study was todo a statistical analysis of ecological type from optical satellite data, using Tipping's sparse Bayesian algorithm. This thesis uses "the Relevence Vector Machine" algorithm in ecological classification betweenforestland and wetland. Further this bi-classification technique was used to do classification of many other different species of trees and produces hierarchical classification of entire subclasses given as a target class. Also, we carried out an attempt to use airborne image of same forest area. Combining it with image analysis, using different image processing operation, we tried to extract good features and later used them to perform classification of forestland and wetland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work had two primary objectives: 1) to produce a working prototype for automated printability assessment and 2) to perform a study of available machine vision and other necessary hardware solutions. The three printability testing methods, IGT Picking,He¬liotest, and mottling, considered in this work have several different requirements and the task was to produce a single automated testing system suitable for all methods. A system was designed and built and its performance was tested using the Heliotest. Working proto¬types are important tools for implementing theoretical methods into practical systems and testing and demonstrating the methodsin real life conditions. The system was found to be sufficient for the Heliotest method. Further testing and possible modifications related to other two test methods were left for future works. A short study of available systems and solutions concerning image acquisition of machine vision was performed. The theoretical part of this study includes lighting systems, optical systems and image acquisition tools, mainly cameras and the underlying physical aspects for each portion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasertekniikkaa hyödyntävä 3D-kuvaustekniikka tuo uusia mahdollisuuksia robotilla suoritettavaan kasastapoimintaan. Kasasta otetun syvyyskuvan avulla tuotteista voidaan määrittää perinteisen XY-paikkatiedon lisäksi tuotteen korkeus- ja asentotieto. Näitä uusia ominaisuuksia hyödyntämällä robotilla voidaan suorittaa yksittäisen tuotteen poiminta kasasta eri korkeuksilta ja eri asennoista. Diplomityö kuuluu osana Master Automation Groupin ensimmäiseen 3D-tekniikkaan perustuvaan MAG PixCell 3D -robosoituun kappaleenkäsittelysoluun. Työn tavoitteena on kehittääsyvyyskuvan käsittelyyn algoritmeja, joiden avulla robotilla voidaan poimia yksitellen kasassa olevia metallisia saksen teriä. Algoritmien tarkoituksena on varmistaa kasasta löydettyjen terien poimittavuus sekä määrittää poimittavien terien korkeudet ja asennot. Tarkastusten jälkeen robotille välitetään terien XYZ-koordinaatti- ja asentotiedot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrast enhancement is an image processing technique where the objective is to preprocess the image so that relevant information can be either seen or further processed more reliably. These techniques are typically applied when the image itself or the device used for image reproduction provides poor visibility and distinguishability of different regions of interest inthe image. In most studies, the emphasis is on the visualization of image data,but this human observer biased goal often results to images which are not optimal for automated processing. The main contribution of this study is to express the contrast enhancement as a mapping from N-channel image data to 1-channel gray-level image, and to devise a projection method which results to an image with minimal error to the correct contrast image. The projection, the minimum-error contrast image, possess the optimal contrast between the regions of interest in the image. The method is based on estimation of the probability density distributions of the region values, and it employs Bayesian inference to establish the minimum error projection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality inspection and assurance is a veryimportant step when today's products are sold to markets. As products are produced in vast quantities, the interest to automate quality inspection tasks has increased correspondingly. Quality inspection tasks usuallyrequire the detection of deficiencies, defined as irregularities in this thesis. Objects containing regular patterns appear quite frequently on certain industries and science, e.g. half-tone raster patterns in the printing industry, crystal lattice structures in solid state physics and solder joints and components in the electronics industry. In this thesis, the problem of regular patterns and irregularities is described in analytical form and three different detection methods are proposed. All the methods are based on characteristics of Fourier transform to represent regular information compactly. Fourier transform enables the separation of regular and irregular parts of an image but the three methods presented are shown to differ in generality and computational complexity. Need to detect fine and sparse details is common in quality inspection tasks, e.g., locating smallfractures in components in the electronics industry or detecting tearing from paper samples in the printing industry. In this thesis, a general definition of such details is given by defining sufficient statistical properties in the histogram domain. The analytical definition allowsa quantitative comparison of methods designed for detail detection. Based on the definition, the utilisation of existing thresholding methodsis shown to be well motivated. Comparison of thresholding methods shows that minimum error thresholding outperforms other standard methods. The results are successfully applied to a paper printability and runnability inspection setup. Missing dots from a repeating raster pattern are detected from Heliotest strips and small surface defects from IGT picking papers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.