26 resultados para Bayesian model selection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to reduce greenhouse emissions from forest degradation and deforestation the international programme REDD (Reducing Emissions from Deforestation and forest Degradation) was established in 2005 by the United Nations Framework Convention on Climate Change (UNFCCC). This programme is aimed to financially reward to developing countries for any emissions reductions. Under this programm the project of setting up the payment system in Nepal was established. This project is aimed to engage local communities in forest monitoring. The major objective of this thesis is to compare and verify data obtained from di erect sources - remotely sensed data, namely LiDAR and field sample measurements made by two groups of researchers using two regression models - Sparse Bayesian Regression and Bayesian Regression with Orthogonal Variables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Service provider selection has been said to be a critical factor in the formation of supply chains. Through successful selection companies can attain competitive advantage, cost savings and more flexible operations. Service provider management is the next crucial step in outsourcing process after the selection has been made. Without proper management companies cannot be sure about the level of service they have bought and they may suffer from service provider's opportunistic behavior. In worst case scenario the buyer company may end up in locked-in situation in which it is totally dependent of the service provider. This thesis studies how the case company conducts its carrier selection process along with the criteria related to it. A model for the final selection is also provided. In addition, case company's carrier management procedures are reflected against recommendations from previous researches. The research was conducted as a qualitative case study on the principal company, Neste Oil Retail. A literature review was made on outsourcing, service provider selection and service provider management. On the basis of the literature review, this thesis ended up recommending Analytic hierarchy process as the preferred model for the carrier selection. Furthermore, Agency theory was seen to be a functional framework for carrier management in this study. Empirical part of this thesis was conducted in the case company by interviewing the key persons in the selection process, making observations and going through documentations related to the subject. According to the results from the study, both carrier selection process as well as carrier management were closely in line with suggestions from literature review. Analytic hierarchy process results revealed that the case company considers service quality as the most important criteria with financial situation and price of service following behind with almost identical weights with each other. Equipment and personnel was seen as the least important selection criterion. Regarding carrier management, the study resulted in the conclusion that the company should consider engaging more in carrier development and working towards beneficial and effective relationships. Otherwise, no major changes were recommended for the case company processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open innovation paradigm states that the boundaries of the firm have become permeable, allowing knowledge to flow inwards and outwards to accelerate internal innovations and take unused knowledge to the external environment; respectively. The successful implementation of open innovation practices in firms like Procter & Gamble, IBM, and Xerox, among others; suggest that it is a sustainable trend which could provide basis for achieving competitive advantage. However, implementing open innovation could be a complex process which involves several domains of management; and whose term, classification, and practices have not totally been agreed upon. Thus, with many possible ways to address open innovation, the following research question was formulated: How could Ericsson LMF assess which open innovation mode to select depending on the attributes of the project at hand? The research followed the constructive research approach which has the following steps: find a practical relevant problem, obtain general understanding of the topic, innovate the solution, demonstrate the solution works, show theoretical contributions, and examine the scope of applicability of the solution. The research involved three phases of data collection and analysis: Extensive literature review of open innovation, strategy, business model, innovation, and knowledge management; direct observation of the environment of the case company through participative observation; and semi-structured interviews based of six cases involving multiple and heterogeneous open innovation initiatives. Results from the cases suggest that the selection of modes depend on multiple reasons, with a stronger influence of factors related to strategy, business models, and resources gaps. Based on these and others factors found in the literature review and observations; it was possible to construct a model that supports approaching open innovation. The model integrates perspectives from multiple domains of the literature review, observations inside the case company, and factors from the six open innovation cases. It provides steps, guidelines, and tools to approach open innovation and assess the selection of modes. Measuring the impact of open innovation could take years; thus, implementing and testing entirely the model was not possible due time limitation. Nevertheless, it was possible to validate the core elements of the model with empirical data gathered from the cases. In addition to constructing the model, this research contributed to the literature by increasing the understanding of open innovation, providing suggestions to the case company, and proposing future steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appropriate supplier selection and its profound effects on increasing the competitive advantage of companies has been widely discussed in supply chain management (SCM) literature. By raising environmental awareness among companies and industries they attach more importance to sustainable and green activities in selection procedures of raw material providers. The current thesis benefits from data envelopment analysis (DEA) technique to evaluate the relative efficiency of suppliers in the presence of carbon dioxide (CO2) emission for green supplier selection. We incorporate the pollution of suppliers as an undesirable output into DEA. However, to do so, two conventional DEA model problems arise: the lack of the discrimination power among decision making units (DMUs) and flexibility of the inputs and outputs weights. To overcome these limitations, we use multiple criteria DEA (MCDEA) as one alternative. By applying MCDEA the number of suppliers which are identified as efficient will be decreased and will lead to a better ranking and selection of the suppliers. Besides, in order to compare the performance of the suppliers with an ideal supplier, a “virtual” best practice supplier is introduced. The presence of the ideal virtual supplier will also increase the discrimination power of the model for a better ranking of the suppliers. Therefore, a new MCDEA model is proposed to simultaneously handle undesirable outputs and virtual DMU. The developed model is applied for green supplier selection problem. A numerical example illustrates the applicability of the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluid handling systems such as pump and fan systems are found to have a significant potential for energy efficiency improvements. To deliver the energy saving potential, there is a need for easily implementable methods to monitor the system output. This is because information is needed to identify inefficient operation of the fluid handling system and to control the output of the pumping system according to process needs. Model-based pump or fan monitoring methods implemented in variable speed drives have proven to be able to give information on the system output without additional metering; however, the current model-based methods may not be usable or sufficiently accurate in the whole operation range of the fluid handling device. To apply model-based system monitoring in a wider selection of systems and to improve the accuracy of the monitoring, this paper proposes a new method for pump and fan output monitoring with variable-speed drives. The method uses a combination of already known operating point estimation methods. Laboratory measurements are used to verify the benefits and applicability of the improved estimation method, and the new method is compared with five previously introduced model-based estimation methods. According to the laboratory measurements, the new estimation method is the most accurate and reliable of the model-based estimation methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing population in cities increases the energy demand and affects the environment by increasing carbon emissions. Information and communications technology solutions which enable energy optimization are needed to address this growing energy demand in cities and to reduce carbon emissions. District heating systems optimize the energy production by reusing waste energy with combined heat and power plants. Forecasting the heat load demand in residential buildings assists in optimizing energy production and consumption in a district heating system. However, the presence of a large number of factors such as weather forecast, district heating operational parameters and user behavioural parameters, make heat load forecasting a challenging task. This thesis proposes a probabilistic machine learning model using a Naive Bayes classifier, to forecast the hourly heat load demand for three residential buildings in the city of Skellefteå, Sweden over a period of winter and spring seasons. The district heating data collected from the sensors equipped at the residential buildings in Skellefteå, is utilized to build the Bayesian network to forecast the heat load demand for horizons of 1, 2, 3, 6 and 24 hours. The proposed model is validated by using four cases to study the influence of various parameters on the heat load forecast by carrying out trace driven analysis in Weka and GeNIe. Results show that current heat load consumption and outdoor temperature forecast are the two parameters with most influence on the heat load forecast. The proposed model achieves average accuracies of 81.23 % and 76.74 % for a forecast horizon of 1 hour in the three buildings for winter and spring seasons respectively. The model also achieves an average accuracy of 77.97 % for three buildings across both seasons for the forecast horizon of 1 hour by utilizing only 10 % of the training data. The results indicate that even a simple model like Naive Bayes classifier can forecast the heat load demand by utilizing less training data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Personalized medicine will revolutionize our capabilities to combat disease. Working toward this goal, a fundamental task is the deciphering of geneticvariants that are predictive of complex diseases. Modern studies, in the formof genome-wide association studies (GWAS) have afforded researchers with the opportunity to reveal new genotype-phenotype relationships through the extensive scanning of genetic variants. These studies typically contain over half a million genetic features for thousands of individuals. Examining this with methods other than univariate statistics is a challenging task requiring advanced algorithms that are scalable to the genome-wide level. In the future, next-generation sequencing studies (NGS) will contain an even larger number of common and rare variants. Machine learning-based feature selection algorithms have been shown to have the ability to effectively create predictive models for various genotype-phenotype relationships. This work explores the problem of selecting genetic variant subsets that are the most predictive of complex disease phenotypes through various feature selection methodologies, including filter, wrapper and embedded algorithms. The examined machine learning algorithms were demonstrated to not only be effective at predicting the disease phenotypes, but also doing so efficiently through the use of computational shortcuts. While much of the work was able to be run on high-end desktops, some work was further extended so that it could be implemented on parallel computers helping to assure that they will also scale to the NGS data sets. Further, these studies analyzed the relationships between various feature selection methods and demonstrated the need for careful testing when selecting an algorithm. It was shown that there is no universally optimal algorithm for variant selection in GWAS, but rather methodologies need to be selected based on the desired outcome, such as the number of features to be included in the prediction model. It was also demonstrated that without proper model validation, for example using nested cross-validation, the models can result in overly-optimistic prediction accuracies and decreased generalization ability. It is through the implementation and application of machine learning methods that one can extract predictive genotype–phenotype relationships and biological insights from genetic data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bearing performance signi cantly a ects the dynamic behaviors and estimated working life of a rotating system. A common bearing type is the ball bearing, which has been under investigation in numerous published studies. The complexity of the ball bearing models described in the literature varies. Naturally, model complexity is related to computational burden. In particular, the inclusion of centrifugal forces and gyroscopic moments signi cantly increases the system degrees of freedom and lengthens solution time. On the other hand, for low or moderate rotating speeds, these e ects can be neglected without signi cant loss of accuracy. The objective of this paper is to present guidelines for the appropriate selection of a suitable bearing model for three case studies. To this end, two ball bearing models were implemented. One considers high-speed forces, and the other neglects them. Both models were used to study a three structures, and the simulation results were.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.