21 resultados para Arsenic de gallium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maapallon väestön kasvaessa ja tarpeen makealle vedelle, ruualle ja viljelymaalle noustessa on tärkeää alkaa kiinnittää entistä tarkemmin huomiota vesistöjen ja maaperän saastumiseen myrkyllisillä raskasmetalleilla. Erityisesti elohopea ja arseeni, jotka jo nyt vaikuttavat heikentävästi miljoonien ihmisten elämään eri puolilla maapalloa, on syytä ottaa huolelliseen tarkkailuun. Raskasmetallien päästölähteet voidaan jakaa kahteen luokkaan, luonnollisiin ja ihmisperäisiin. Ihmisperäisiin päästölähteisiin voidaan vaikuttaa muun muassa teollisuutta ja liikennettä koskevalla lainsäädännöllä. Luonnollisiin päästölähteisiin vaikuttaminen on huomattavasti haastavampaa, mutta niiden haittaa ihmisille on mahdollista pienentää muun muassa parempien vedenpuhdistustekniikoiden avulla. Tämän työn kirjallisuusosassa tullaan esittelemään erityyppisiä luonnossa esiintyviä arseenin ja elohopean yhdisteitä, suurimpia arseenin ja elohopean päästölähteitä, sekä näiden raskasmetallien haitallisia terveysvaikutuksia. Kokeellisessa osassa tullaan keskittymään arseenin analysointiin nestemäisistä näytteistä. Näytteinä käytettiin tuntemattomilta kaatopaikoilta otettuja suotovesinäytteitä, sekä Pien-Saimaan pintavesinäytteitä. Analyyseihin on käytetty ICP-AES laitteistoa sekä kapillaarielektroforeesia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of the biorefinery concept researchers aspire to optimize the utilization of plant materials, such as agricultural wastes and wood. For most of the known processes, the first steps in the valorisation of biomass are the extraction and purification of the individual components. The obtained raw products by means of a controlled separation can consecutively be modified to result in biofuels or biogas for energy production, but also in value-added products such as additives and important building blocks for the chemical and material industries. Considerable efforts are undertaken in order to substitute the use of oil-based starting materials or at least minimize their processing for the production of everyday goods. Wood is one of the raw materials, which have gained large attention in the last decades and its composition has been studied in detail. Nowadays, the extraction of water-soluble hemicelluloses from wood is well known and so for example xylan can be obtained from hardwoods and O-acetyl galactoglucomannans (GGMs) from softwoods. The aim of this work was to develop water-soluble amphiphilic materials of GGM and to assess their potential use as additives. Furthermore, GGM was also applied as a crosslinker in the synthesis of functional hydrogels for the removal of toxic metals and metalloid ions from aqueous solutions. The distinguished products were obtained by several chemical approaches and analysed by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), thermal gravimetric analysis (TGA), scanning electron microscope SEM, among others. Bio-based surfactants were produced by applying GGM and different fatty acids as starting materials. On one hand, GGM-grafted-fatty acids were prepared by esterification and on the other hand, well-defined GGM-block-fatty acid derivatives were obtained by linking amino-functional fatty acids to the reducing end of GGM. The reaction conditions for the syntheses were optimized and the resultant amphiphilic GGM derivatives were evaluated concerning their ability to reduce the surface tension of water as surfactants. Furthermore, the block-structured derivatives were tested in respect to their applicability as additives for the surface modification of cellulosic materials. Besides the GGM surfactants with a bio-based hydrophilic and a bio-based hydrophobic part, also GGM block-structured derivatives with a synthetic hydrophobic tail, consisting of a polydimethylsiloxane chain, were prepared and assessed for the hydrophobization of surface of nanofibrillated cellulose films. In order to generate GGM block-structured derivatives containing a synthetic tail with distinguished physical and chemical properties, as well as a tailored chain length, a controlled polymerization method was used. Therefore, firstly an initiator group was introduced at the reducing end of the GGM and consecutively single electron transfer-living radical polymerization (SET-LRP) was performed by applying three different monomers in individual reactions. For the accomplishment of the synthesis and the analysis of the products, challenges related to the solubility of the reactants had to be overcome. Overall, a synthesis route for the production of GGM block-copolymers bearing different synthetic polymer chains was developed and several derivatives were obtained. Moreover, GGM with different molar masses were, after modification, used as a crosslinker in the synthesis of functional hydrogels. Hereby, a cationic monomer was used during the free radical polymerization and the resultant hydrogels were successfully tested for the removal of chromium and arsenic ions from aqueous solutions. The hydrogel synthesis was tailored and materials with distinguished physical properties, such as the swelling rate, were obtained after purification. The results generated in this work underline the potential of bio-based products and the urge to continue carrying out research in order to be able to use more green chemicals for the manufacturing of biorenewable and biodegradable daily products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis the basic structure and operational principals of single- and multi-junction solar cells are considered and discussed. Main properties and characteristics of solar cells are briefly described. Modified equipment for measuring the quantum efficiency for multi-junction solar cell is presented. Results of experimental research single- and multi-junction solar cells are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainability and recycling are core values in today’s industrial operations. New materials, products and processes need to be designed in such a way as to consume fewer of the diminishing resources we have available and to put as little strain on the environment as possible. An integral part of this is cleaning and recycling. New processes are to be designed to improve the efficiency in this aspect. Wastewater, including municipal wastewaters, is treated in several steps including chemical and mechanical cleaning of waters. Well-cleaned water can be recycled and reused. Clean water for everyone is one of the greatest challenges we are facing today. Ferric sulphate, made by oxidation from ferrous sulphate, is used in water purification. The oxidation of ferrous sulphate, FeSO4, to ferric sulphate in acidic aqueous solutions of H2SO4 over finely dispersed active carbon particles was studied in a vigorously stirred batch reactor. Molecular oxygen was used as the oxidation agent and several catalysts were screened: active carbon, active carbon impregnated with Pt, Rh, Pd and Ru. Both active carbon and noble metal-active carbon catalysts enhanced the oxidation rate considerably. The order of the noble metals according to the effect was: Pt >> Rh > Pd, Ru. By the use of catalysts, the production capacities of existing oxidation units can be considerably increased. Good coagulants have a high charge on a long polymer chain effectively capturing dirty particles of the opposite charge. Analysis of the reaction product indicated that it is possible to obtain polymeric iron-based products with good coagulation properties. Systematic kinetic experiments were carried out at the temperature and pressure ranges of 60B100°C and 4B10 bar, respectively. The results revealed that both non-catalytic and catalytic oxidation of Fe2+ to Fe3+ take place simultaneously. The experimental data were fitted to rate equations, which were based on a plausible reaction mechanism: adsorption of dissolved oxygen on active carbon, electron transfer from Fe2+ ions to adsorbed oxygen and formation of surface hydroxyls. A comparison of the Fe2+ concentrations predicted by the kinetic model with the experimentally observed concentrations indicated that the mechanistic rate equations were able to describe the intrinsic oxidation kinetics of Fe2+ over active carbon and active carbon-noble metal catalysts. Engineering aspects were closely considered and effort was directed to utilizing existing equipment in the production of the new coagulant. Ferrous sulphate can be catalytically oxidized to produce a novel long-chained polymeric iron-based flocculent in an easy and affordable way in existing facilities. The results can be used for modelling the reactors and for scale-up. Ferric iron (Fe3+) was successfully applied for the dissolution of sphalerite. Sphalerite contains indium, gallium and germanium, among others, and the application can promote their recovery. The understanding of the reduction process of ferric to ferrous iron can be used to develop further the understanding of the dissolution mechanisms and oxidation of ferrous sulphate. Indium, gallium and germanium face an ever-increasing demand in the electronics industry, among others. The supply is, however, very limited. The fact that most part of the material is obtained through secondary production means that real production quota depends on the primary material production. This also sets the pricing. The primary production material is in most cases zinc and aluminium. Recycling of scrap material and the utilization of industrial waste, containing indium, gallium and geranium, is a necessity without real options. As a part of this study plausible methods for the recovery of indium, gallium and germanium have been studied. The results were encouraging and provided information about the precipitation of these valuables from highly acidic solutions. Indium and gallium were separated from acidic sulphuric acid solutions by precipitation with basic sulphates such as alunite or they were precipitated as basic sulphates of their own as galliunite and indiunite. Germanium may precipitate as a basic sulphate of a mixed composition. The precipitation is rapid and the selectivity is good. When the solutions contain both indium and gallium then the results show that gallium should be separated before indium to achieve a better selectivity. Germanium was separated from highly acidic sulphuric acid solutions containing other metals as well by precipitating with tannic acid. This is a highly selective method. According to the study other commonly found metals in the solution do not affect germanium precipitation. The reduction of ferric iron to ferrous, the precipitation of indium, gallium and germanium, and the dissolution of the raw materials are strongly depending on temperature and pH. The temperature and pH effect were studied and which contributed to the understanding and design of the different process steps. Increased temperature and reduced pH improve the reduction rate. Finally, the gained understanding in the studied areas can be employed to develop better industrial processes not only on a large scale but also increasingly on a smaller scale. The small amounts of indium, gallium and germanium may favour smaller and more locally bound recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä diplomityössä käsiteltiin spektrometrisia online-mittausmenetelmiä jätteiden kemiallisten ja fysikaalisten ominaisuuksien määrittämiseksi. Tavoitteena oli selvittää, mitä ominaisuuksia menetelmillä voidaan mitata ja kuinka luotettavia tuloksia mittauksilla saadaan. Diplomityössä suoritettiin kirjallisuuskatsaus, jossa käsiteltiin kolmen spektrometrisen menetelmän soveltuvuutta reaaliaikaisiin jätemittauksiin. Työn empiirisessä osassa FPXRFanalysaattorilla mitattiin neljän eri jätenäytteen alkuainepitoisuuksia. Mittauksen tarkoituksena oli selvittää, mitä alkuaineita menetelmällä voidaan mitata. FPXRF-analysaattorilla saatuja tuloksia verrattiin ICP-MS-menetelmällä saatuihin tuloksiin regressioanalyysin avulla. Työssä todettiin, että FPXRF-analysaattori sopii parhaiten kaliumin, kalsiumin, ja raudan pitoisuuksien määrittämiseen. Lisäksi lyijyn, sinkin, kromin, kloorin, kuparin, kadmiumin, arseenin, fosforin, molybdeenin ja vanadiinin määrittäminen on mahdollista, mutta tarkan pitoisuuden saamiseksi laboratoriomenetelmien käyttö voi olla tarpeen. Tutkituista jätenäytteistä menetelmä soveltui parhaiten tuhkalle ja kompostille niiden fyysisten ominaisuuksien, kuten homogeenisuuden ja kosteuspitoisuuden takia. Biojätteelle menetelmä soveltui huonosti. FPXRF-analysaattorin luotettavuuteen vaikuttaa näytteen kosteuspitoisuus, homogeenisuus, partikkelikoko, mittaustapa ja laitteen kalibrointi. Työssä tarkastelluilla menetelmillä ei voida tällä hetkellä täysin korvata laboratorioanalyyseja. FPXRF-analysaattoria voidaan kuitenkin käyttää kvalitatiiviseen tai semikvantitatiiviseen haitta-aineiden analysointiin, millä voidaan vähentää kalliiden laboratorioanalyysien tarvetta.