36 resultados para Animal feeding.
Resumo:
Stockton 1789
Resumo:
Selostus: Tasaruokinnan ja vaihtoehtoisten rehujen soveltuvuus emolehmien talvikauden ruokintaan
Resumo:
Selostus: Vapaan ja rajoitetun maitojuoton vaikutukset ayrshiresonnien kasvuun koko kasvatuskauden aikana ja teurastuloksiin
Resumo:
The purpose of this work was to study the characteristics of the most commonly used filter aid materials and their influences on the design of proportioning, mixing, and feeding system for polishing filter family. Based on the literature survey and hands-on experience a system was designed with defined equipment and capital and operating costs. The system was designed to serve precoating and bodyfeeding applications and is easily extended to be used in multiple filter processes. Also a test procedure was carried out where influences of flux and filter cloths to accumulated cake were studied. Filter aid is needed in challenging conditions to improve filtration efficiency and cleaning, and thus extend the operating life of the filter media. Filter aid preparation and feeding system was designed for the use of two different filter aids; precoat and bodyfeed. Precoating is used before the filtration step initiates. If the solids in the filterable solution have a tendency to clog the filter bag easily, precoat is used on the filter bag to obtain better filtration efficiency and quality. Diatomite or perlite is usually used as a precoating substance. The intention is to create a uniform cake to the overall surface of the filter cloth, with predetermined thickness, 2 – 5 mm. This ensures that the clogging of the filter cloth is reduced and the filtration efficiency is increased. Bodyfeed is used if the solids in the filterable solution have a tendency to form a sticky impermeable filter cake. The cake properties are enhanced by maintaining the permeability of the accumulating cake by using the filter aid substance as bodyfeed during the filtration process.
Resumo:
Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.
Resumo:
Kirjallisuusarvostelu