33 resultados para Altichiero, active 1303-1313.
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
Frequency converters are widely used in the industry to enable better controllability and efficiency of variable speed AC motor drives. Despite these advantages, certain challenges concerning the inverter and motor interfacing have been present for decades. As insulated gate bipolar transistors entered the market, the inverter output voltage transition rate significantly increased compared with their predecessors. Inverters operate based on pulse width modulation of the output voltage, and the steep voltage edge fed by the inverter produces a motor terminal overvoltage. The overvoltage causes extra stress to the motor insulation, which may lead to a prematuremotor failure. The overvoltage is not generated by the inverter alone, but also by the sum effect of the motor cable length and the impedance mismatch between the cable and the motor. Many solutions have been shown to limit the overvoltage, and the mainstream products focus on passive filters. This doctoral thesis studies an alternative methodology for motor overvoltage reduction. The focus is on minimization of the passive filter dimensions, physical and electrical, or better yet, on operation without any filter. This is achieved by additional inverter control and modulation. The studied methods are implemented on different inverter topologies, varying in nominal voltage and current.For two-level inverters, the studied method is termed active du/dt. It consists of a small output LC filter, which is controlled by an independent modulator. The overvoltage is limited by a reduced voltage transition rate. For multilevel inverters, an overvoltage mitigation method operating without a passive filter, called edge modulation, is implemented. The method uses the capability of the inverter to produce two switching operations in the same direction to cancel the oscillating voltages of opposite phases. For parallel inverters, two methods are studied. They are both intended for two-level inverters, but the first uses individual motor cables from each inverter while the other topology applies output inductors. The overvoltage is reduced by interleaving the switching operations to produce a similar oscillation accumulation as with the edge modulation. The implementation of these methods is discussed in detail, and the necessary modifications to the control system of the inverter are presented. Each method is experimentally verified by operating industrial frequency converters with the modified control. All the methods are found feasible, and they provide sufficient overvoltage protection. The limitations and challenges brought about by the methods are discussed.
Resumo:
Purpose of the study is to evaluate performance of active portfolio management and the effect of stock market trend on the performance. Theory of efficient markets states that market prices reflect all available information and that all investors share a common view of future price developments. This view gives little room for the success of active management, but the theory has been disputed – at least the level of efficiency. Behavioral finance has developed theories that identify irrational behavior patterns of investors. For example, investment decisions are not made independent of past market developments. These findings give reason to believe that also the performance of active portfolio management may depend on market developments. Performance of 16 Finnish equity funds is evaluated during the period of 2005 to 2011. In addition two sub periods are constructed, a bull market period and a bear market period. The sub periods are created by joining together the two bull market phases and the two bear market phases of the whole period. This allows for the comparison of the two different market states. Performance of the funds is measured with risk-adjusted performance by Modigliani and Modigliani (1997), abnormal return over the CAPM by Jensen (1968), and market timing by Henriksson and Merton (1981). The results suggested that in average the funds are not able to outperform the market portfolio. However, the underperformance was found to be lower than the management fees in average which suggests that portfolio managers are able to do successful investment decisions to some extent. The study revealed substantial dependence on the market trend for all of the measures. The risk-adjusted performance measure suggested that in bear markets active portfolio managers in average are able to beat the market portfolio but not in bull markets. Jensen´s alpha and the market timing model also showed striking differences between the two market states. The results of these two measures were, however, somewhat problematic and reliable conclusions about the performance could not be drawn.
Resumo:
Läkemedel konsumeras årligen i enorma mängder världen över. Efter intag kommer en del av läkemedlets aktiva förening(ar) att utsöndras från kroppen med urin och fekalier för att sedan transporteras till avloppsreningsverk. Till följd av att reningsverken inte fullständigt förmår rena avloppsvattnet från dessa föreningar kommer de att kontinuerligt tillföras vattenmiljön. Således är det viktigt att utveckla analytiska metoder för att kunna studera halterna av de aktiva föreningarna i reningsverkens utloppsvatten och den närliggande vattenmiljön. Ute i naturen kommer föreningarna att utsättas för olika fysikaliska, kemiska och biologiska processer, vilka kan orsaka förändringar i deras kemiska struktur och därigenom deras identitet och biologiska aktivitet. En stor del av de befintliga aktiva föreningarna genomgår kemisk förändring då de i vattenmiljön utsätts för solljus (fototransformation). Genom fototransformation kan nya föreningar (transformationsprodukter) med andra kemiska och biologiska egenskaper bildas. Denna avhandling inriktar sig på de aktiva föreningarnas förekomst och fotokemiska öde i miljön. I avhandlingen presenteras framtagna analytiska metoder för kvantifiering av läkemedelsföreningar i avloppsvatten och ytvatten samt för studier av vissa utvalda föreningars fotokemiska transformationsvägar. Därtill beskrivs några syntetiska metoder för att få tillgång till transformationsprodukter av det antiinflammatoriska ämnet diklofenak.
Resumo:
In this work the implementation of the active magnetic bearing control system in a single FPGA is studied. Requirements for the full magnetic bearing control system are reviewed. Different control methods for active magnetic bearings are described shortly. Flux and the current base controllers are implemented in a FPGA. Suitability of the con-trollers for a low-cost magnetic bearing application is studied. Floating-point arithmetic’s are used in the controllers to ease designing burden and improve calculation precision. Per-formance of the flux controller is verified with simulations.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
This doctoral thesis introduces an improved control principle for active du/dt output filtering in variable-speed AC drives, together with performance comparisons with previous filtering methods. The effects of power semiconductor nonlinearities on the output filtering performance are investigated. The nonlinearities include the timing deviation and the voltage pulse waveform distortion in the variable-speed AC drive output bridge. Active du/dt output filtering (ADUDT) is a method to mitigate motor overvoltages in variable-speed AC drives with long motor cables. It is a quite recent addition to the du/dt reduction methods available. This thesis improves on the existing control method for the filter, and concentrates on the lowvoltage (below 1 kV AC) two-level voltage-source inverter implementation of the method. The ADUDT uses narrow voltage pulses having a duration in the order of a microsecond from an IGBT (insulated gate bipolar transistor) inverter to control the output voltage of a tuned LC filter circuit. The filter output voltage has thus increased slope transition times at the rising and falling edges, with an opportunity of no overshoot. The effect of the longer slope transition times is a reduction in the du/dt of the voltage fed to the motor cable. Lower du/dt values result in a reduction in the overvoltage effects on the motor terminals. Compared with traditional output filtering methods to accomplish this task, the active du/dt filtering provides lower inductance values and a smaller physical size of the filter itself. The filter circuit weight can also be reduced. However, the power semiconductor nonlinearities skew the filter control pulse pattern, resulting in control deviation. This deviation introduces unwanted overshoot and resonance in the filter. The controlmethod proposed in this thesis is able to directly compensate for the dead time-induced zero-current clamping (ZCC) effect in the pulse pattern. It gives more flexibility to the pattern structure, which could help in the timing deviation compensation design. Previous studies have shown that when a motor load current flows in the filter circuit and the inverter, the phase leg blanking times distort the voltage pulse sequence fed to the filter input. These blanking times are caused by excessively large dead time values between the IGBT control pulses. Moreover, the various switching timing distortions, present in realworld electronics when operating with a microsecond timescale, bring additional skew to the control. Left uncompensated, this results in distortion of the filter input voltage and a filter self-induced overvoltage in the form of an overshoot. This overshoot adds to the voltage appearing at the motor terminals, thus increasing the transient voltage amplitude at the motor. This doctoral thesis investigates the magnitude of such timing deviation effects. If the motor load current is left uncompensated in the control, the filter output voltage can overshoot up to double the input voltage amplitude. IGBT nonlinearities were observed to cause a smaller overshoot, in the order of 30%. This thesis introduces an improved ADUDT control method that is able to compensate for phase leg blanking times, giving flexibility to the pulse pattern structure and dead times. The control method is still sensitive to timing deviations, and their effect is investigated. A simple approach of using a fixed delay compensation value was tried in the test setup measurements. The ADUDT method with the new control algorithm was found to work in an actual motor drive application. Judging by the simulation results, with the delay compensation, the method should ultimately enable an output voltage performance and a du/dt reduction that are free from residual overshoot effects. The proposed control algorithm is not strictly required for successful ADUDT operation: It is possible to precalculate the pulse patterns by iteration and then for instance store them into a look-up table inside the control electronics. Rather, the newly developed control method is a mathematical tool for solving the ADUDT control pulses. It does not contain the timing deviation compensation (from the logic-level command to the phase leg output voltage), and as such is not able to remove the timing deviation effects that cause error and overshoot in the filter. When the timing deviation compensation has to be tuned-in in the control pattern, the precalculated iteration method could prove simpler and equally good (or even better) compared with the mathematical solution with a separate timing compensation module. One of the key findings in this thesis is the conclusion that the correctness of the pulse pattern structure, in the sense of ZCC and predicted pulse timings, cannot be separated from the timing deviations. The usefulness of the correctly calculated pattern is reduced by the voltage edge timing errors. The doctoral thesis provides an introductory background chapter on variable-speed AC drives and the problem of motor overvoltages and takes a look at traditional solutions for overvoltage mitigation. Previous results related to the active du/dt filtering are discussed. The basic operation principle and design of the filter have been studied previously. The effect of load current in the filter and the basic idea of compensation have been presented in the past. However, there was no direct way of including the dead time in the control (except for solving the pulse pattern manually by iteration), and the magnitude of nonlinearity effects had not been investigated. The enhanced control principle with the dead time handling capability and a case study of the test setup timing deviations are the main contributions of this doctoral thesis. The simulation and experimental setup results show that the proposed control method can be used in an actual drive. Loss measurements and a comparison of active du/dt output filtering with traditional output filtering methods are also presented in the work. Two different ADUDT filter designs are included, with ferrite core and air core inductors. Other filters included in the tests were a passive du/dtfilter and a passive sine filter. The loss measurements incorporated a silicon carbide diode-equipped IGBT module, and the results show lower losses with these new device technologies. The new control principle was measured in a 43 A load current motor drive system and was able to bring the filter output peak voltage from 980 V (the previous control principle) down to 680 V in a 540 V average DC link voltage variable-speed drive. A 200 m motor cable was used, and the filter losses for the active du/dt methods were 111W–126 W versus 184 W for the passive du/dt. In terms of inverter and filter losses, the active du/dt filtering method had a 1.82-fold increase in losses compared with an all-passive traditional du/dt output filter. The filter mass with the active du/dt method was 17% (2.4 kg, air-core inductors) compared with 14 kg of the passive du/dt method filter. Silicon carbide freewheeling diodes were found to reduce the inverter losses in the active du/dt filtering by 18% compared with the same IGBT module with silicon diodes. For a 200 m cable length, the average peak voltage at the motor terminals was 1050 V with no filter, 960 V for the all-passive du/dt filter, and 700 V for the active du/dt filtering applying the new control principle.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Tässä työssä on tutkittu modulaarisen aktiivimagneettilaakeroidun koelaitteen mekaanista suunnittelua ja analysointia. Suurnopeusroottorin suunnittelun teoria on esitelty. Lisäksi monia analyyttisiä mallinnusmenetelmiä mekaanisten kuormitusten mallintamiseksi on esitelty. Koska kyseessä on suurnopeussähkökone, roottoridynamiikka ja sen soveltuvuus suunnittelussa on esitelty. Magneettilaakerien rakenteeseen ja toimintaan on tutustuttu osana tätä työtä. Kirjallisuuskatsaus nykyisistä koelaitteista esimerkiksi komponenttien ominaisuuksien tunnistamiseen ja roottoridynamiikan tutkimuksiin on esitelty. Työn rajauksena on konseptisuunnittelu muunneltavalle magneettilaakeroidulle (AMB) koelaitteelle ja suunnitteluprosessin dokumentointi. Muunneltavuuteen päädyttiin, koska se mahdollistaa erilaisten komponenttiasetteluiden testaamisen erilaisille magneettilaakerikokoonpanoille ja roottoreille. Pääpaino tässä työssä on suurnopeus induktiokoneen roottorin suunnittelussa ja mallintamisessa. Modulaaristen toimilaitteiden kuten magneettilaakerien ja induktiosähkömoottorin rakenne on esitelty ja modulaarisen rakenteen käytettävyyden hyödyistä koelaitekäytössä on dokumentoitu. Analyyttisiä ja elementtimenetelmään perustuvia tutkimusmenetelmiä on käytetty tutkittaessa suunniteltua suurnopeusroottoria. Suunnittelun ja analysoinnin tulokset on esitelty ja verrattu keskenään eri mallinnusmenetelmien välillä. Lisäksi johtopäätökset sähkömagneettisten osien liittämisen monimutkaisuudesta ja vaatimuksista roottoriin ja toimilaitteisiin sekä mekaanisten että sähkömagneettisten ominaisuuksien optimoimiseksi on dokumentoitu.
Virtual Testing of Active Magnetic Bearing Systems based on Design Guidelines given by the Standards
Resumo:
Active Magnetic Bearings offer many advantages that have brought new applications to the industry. However, similarly to all new technology, active magnetic bearings also have downsides and one of those is the low standardization level. This thesis is studying mainly the ISO 14839 standard and more specifically the system verification methods. These verifying methods are conducted using a practical test with an existing active magnetic bearing system. The system is simulated with Matlab using rotor-bearing dynamics toolbox, but this study does not include the exact simulation code or a direct algebra calculation. However, this study provides the proof that standardized simulation methods can be applied in practical problems.