31 resultados para AMPLIFIED SPONTANEOUS EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early Detection of Alzheimer's Disease Beta-amyloid Pathology -Applicability of Positron Emission Tomography with the Amyloid Radioligand 11C-PIB Accumulation of beta amyloid (Abeta) in the brain is characteristic for Alzheimer’s disease (AD). Carbon-11 labeled 2-(4’-methylaminophenyl)-6-hydroxybenzothiazole (11C-PIB) is a novel positron emission tomography (PET) amyloid imaging agent that appears to be applicable for in vivo Abeta plaque detection and quantitation. The biodistribution and radiation dosimetry of 11C-PIB were investigated in 16 healthy subjects. The reproducibility of a simplified 11C-PIB quantitation method was evaluated with a test-retest study on 6 AD patients and 4 healthy control subjects. Brain 11C-PIB uptake and its possible association with brain atrophy rates were studied over a two-year follow-up in 14 AD patients and 13 healthy controls. Nine monozygotic and 8 dizygotic twin pairs discordant for cognitive impairment and 9 unrelated controls were examined to determine whether brain Abeta accumulation could be detected with 11C-PIB PET in cognitively intact persons who are at increased genetic risk for AD. The highest absorbed radiation dose was received by the gallbladder wall (41.5 mjuGy/MBq). About 20 % of the injected radioactivity was excreted into urine, and the effective whole-body radiation dose was 4.7 mjuSv/MBq. Such a dose allows repeated scans of individual subjects. The reproducibility of the simplified 11C-PIB quantitation was good or excellent both at the regional level (VAR 0.9-5.5 %) and at the voxel level (VAR 4.2-6.4 %). 11C-PIB uptake did not increase during 24 months’ follow-up of subjects with mild or moderate AD, even though brain atrophy and cognitive decline progressed. Baseline neocortical 11C-PIB uptake predicted subsequent volumetric brain changes in healthy control subjects (r = 0.725, p = 0.005). Cognitively intact monozygotic co-twins – but not dizygotic co-twins – of memory-impaired subjects exhibited increased 11C-PIB uptake (117-121 % of control mean) in their temporal and parietal cortices and the posterior cingulate (p<0.05), when compared with unrelated controls. This increased uptake may be representative of an early AD process, and genetic factors seem to play an important role in the development of AD-like Abeta plaque pathology. 11C-PIB PET may be a useful method for patient selection and follow-up for early-phase intervention trials of novel therapeutic agents. AD might be detectable in high-risk individuals in its presymptomatic stage with 11C-PIB PET, which would have important consequences both for future diagnostics and for research on disease-modifying treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tämän työn tavoitteena oli selvittää ja toteuttaa esikäsittelypiirin prototyyppi akustisen emission anturin signaalille. Toteutettu esikäsittelypiiri toimii yksipuoleisella käyttöjännitteellä. Työssä käydään läpi esikäsittelypiirin suunnitteluun liittyvät vaiheet laskelmien ja simulaatioiden muodossa. Lisäksi työssä esitetään mittaustulokset esikäsittelypiirin toiminnasta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The action of the neurotransmitters dopamine (DA) and serotonin (5-HT) at synapses is terminated by their rapid reuptake into presynaptic nerve endings via plasma membrane dopamine (DAT) and serotonin (SERT) transporters. Alterations in the function of these transporters have been suggested as a feature of several neurological and neuropsychiatric diseases, such as Parkinson’s disease (PD), depression, and anxiety. A suitable clinical method for studying these transporters non-invasively in vivo is positron emission tomography (PET) utilizing radiopharmaceuticals (tracers) labelled with short-lived positron-emitting radionuclides. The aim of this study was to evaluate in rats two novel radiotracers, [18F]beta -CFT-FP and 18FFMe-McN, for imaging DAT and SERT, respectively, using in vitro, ex vivo and in vivo methods. Substituting an N-methyl in [18F]beta-CFT, a well known DAT tracer, with a 18Ffluoropropyl group significantly changed the properties of the tracer. [18F]beta- CFT showed slow kinetics and metabolism, and a high specific uptake in the striatum, whereas [18F]beta-CFT-FP showed fast kinetics and metabolism, and a moderate specific uptake in the striatum. [18F]betaCFT-FP was selective for DAT; but [18F]beta-CFT also bound to the noradrenaline transporter. [18F]beta-CFT-FP may be a suitable PET tracer for imaging the striatal DAT sites, but a tracer with a higher affinity is needed for imaging extrastriatal DAT sites. In rats, 18FFMe-McN showed high target-to-non-target ratios, specificity and selectivity for SERT, but slow kinetics. However, 18FFMe-McN reveals potential for imaging SERT, at least in pre-clinical studies. In addition, the sensitivities of [18F]beta CFT and [18 F]FDOPA (a precursor of DA) for detecting mild nigrostriatal hypofunction were compared in an animal model of PD. The uptake of [18F]FDOPA was significantly affected by compensatory effects in dopaminergic cells, whereas [18F]beta-CFT was more sensitive and therefore more suitable for PET studies of mild dopaminergic symptoms. In conclusion, both novel tracers, [18F]-CFT-FP and 18FFMe-McN, have potential, but are not optimal PET tracers for DAT and SERT imaging in rats, respectively. [18F]beta-CFT is superior to [18F]FDOPA for imaging mild nigral lesions in rat brains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer`s disease (AD) is characterised neuropathologically by the presence of extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and cerebral neuronal loss. The pathological changes in AD are believed to start even decades before clinical symptoms are detectable. AD gradually affects episodic memory, cognition, behaviour and the ability to perform everyday activities. Mild cognitive impairment (MCI) represents a transitional state between normal aging and dementia disorders, especially AD. The predictive accuracy of the current and commonly used MCI criteria devide this disorder into amnestic (aMCI) and non-amnestic (naMCI) MCI. It seems that many individuals with aMCI tend to convert to AD. However many MCI individuals will remain stable and some may even recover. At present, the principal drugs for the treatment of AD provide only symptomatic and palliative benefits. Safe and effective mechanism-based therapies are needed for this devastating neurodegenerative disease of later life. In conjunction with the development of new therapeutic drugs, tools for early detection of AD would be important. In future one of the challenges will be to detect at an early stage these MCI individuals who will convert to AD. Methods which can predict which MCI subjects will convert to AD will be much more important if the new drug candidates prove to have disease-arresting or even disease–slowing effects. These types of drugs are likely to have the best efficacy if administered in the early or even in the presymptomatic phase of the disease when the synaptic and neuronal loss has not become too widespread. There is no clinical method to determine with certainly which MCI individuals will progress to AD. However there are several methods which have been suggested as predictors of conversion to AD, e.g. increased [11C] PIB uptake, hippocampal atrophy in MRI, low CSF A beta 42 level, high CSF tau-protein level, apolipoprotein E (APOE) ε4 allele and impairment in episodic memory and executive functions. In the present study subjects with MCI appear to have significantly higher [11C] PIB uptake vs healthy elderly in several brain areas including frontal cortex, the posterior cingulate, the parietal and lateral temporal cortices, putamen and caudate. Also results from this PET study indicate that over time, MCI subjects who display increased [11C] PIB uptake appear to be significantly more likely to convert to AD than MCI subjects with negative [11C] PIB retention. Also hippocampal atrophy seems to increase in MCI individuals clearly during the conversion to AD. In this study [11C] PIB uptake increases early and changes relatively little during the AD process whereas there is progressive hippocampal atrophy during the disease. In addition to increased [11C] PIB retention and hippocampal atrophy, the status of APOE ε4 allele might contribute to the conversion from MCI to AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumour cells differ from normal tissue cells in several important ways. These differences, like for example changed energy metabolism, result in altered microenvironment of malignant tumours. Non-invasive imaging of tumour microenvironment has been at the centre of intense research recently due to the important role that this changed environement plays in the development of malignant tumours and due to the role it plays in the treatment of these tumours. In this respect, perhaps the most important characteristics of the tumour microenvironment from this point of view are the lack of oxygen or hypoxia and changes in blood flow (BF). The purpose of this thesis was to investigate the processes of energy metabolism, BF and oxygenation in head and neck cancer and pancreatic tumours and to explore the possibilities of improving the methods for their quantification using positron emission tomography (PET). To this end [18F]EF5, a new PET tracer for detection of tumour hypoxia was investigated. Favourable uptake properties of the tracer were observed. In addition, it was established that the uptake of this tracer does not correlate with the uptake of existing tracers for the imaging of energy metabolism and BF, so the information about the presence of tissue hypoxia cannot therefore be obtained using tracers such as [18F]FDG or [15O]H2O. These results were complemented by the results of the follow-up study in which it was shown that the uptake of [18F]EF5 in head and neck tumours prior to treatment is also associated with the overall survival of the patients, indicating that tumour hypoxia is a negative prognostic factor and might be associated with therapeutic resistance. The influences of energy metabolism and BF on the survival of patients with pancreatic cancer were investigated in the second study. The results indicate that the best predictor of survival of patients with pancreatic cancer is the relationship between energy metabolism and BF. These results suggest that the cells with high metabolic activity in a hypoperfused tissue have the most aggressive phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron Emission Tomography (PET) using 18F-FDG is playing a vital role in the diagnosis and treatment planning of cancer. However, the most widely used radiotracer, 18F-FDG, is not specific for tumours and can also accumulate in inflammatory lesions as well as normal physiologically active tissues making diagnosis and treatment planning complicated for the physicians. Malignant, inflammatory and normal tissues are known to have different pathways for glucose metabolism which could possibly be evident from different characteristics of the time activity curves from a dynamic PET acquisition protocol. Therefore, we aimed to develop new image analysis methods, for PET scans of the head and neck region, which could differentiate between inflammation, tumour and normal tissues using this functional information within these radiotracer uptake areas. We developed different dynamic features from the time activity curves of voxels in these areas and compared them with the widely used static parameter, SUV, using Gaussian Mixture Model algorithm as well as K-means algorithm in order to assess their effectiveness in discriminating metabolically different areas. Moreover, we also correlated dynamic features with other clinical metrics obtained independently of PET imaging. The results show that some of the developed features can prove to be useful in differentiating tumour tissues from inflammatory regions and some dynamic features also provide positive correlations with clinical metrics. If these proposed methods are further explored then they can prove to be useful in reducing false positive tumour detections and developing real world applications for tumour diagnosis and contouring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present set of studies was to explore primary school children’s Spontaneous Focusing On quantitative Relations (SFOR) and its role in the development of rational number conceptual knowledge. The specific goals were to determine if it was possible to identify a spontaneous quantitative focusing tendency that indexes children’s tendency to recognize and utilize quantitative relations in non-explicitly mathematical situations and to determine if this tendency has an impact on the development of rational number conceptual knowledge in late primary school. To this end, we report on six original empirical studies that measure SFOR in children ages five to thirteen years and the development of rational number conceptual knowledge in ten- to thirteen-year-olds. SFOR measures were developed to determine if there are substantial differences in SFOR that are not explained by the ability to use quantitative relations. A measure of children’s conceptual knowledge of the magnitude representations of rational numbers and the density of rational numbers is utilized to capture the process of conceptual change with rational numbers in late primary school students. Finally, SFOR tendency was examined in relation to the development of rational number conceptual knowledge in these students. Study I concerned the first attempts to measure individual differences in children’s spontaneous recognition and use of quantitative relations in 86 Finnish children from the ages of five to seven years. Results revealed that there were substantial inter-individual differences in the spontaneous recognition and use of quantitative relations in these tasks. This was particularly true for the oldest group of participants, who were in grade one (roughly seven years old). However, the study did not control for ability to solve the tasks using quantitative relations, so it was not clear if these differences were due to ability or SFOR. Study II more deeply investigated the nature of the two tasks reported in Study I, through the use of a stimulated-recall procedure examining children’s verbalizations of how they interpreted the tasks. Results reveal that participants were able to verbalize reasoning about their quantitative relational responses, but not their responses based on exact number. Furthermore, participants’ non-mathematical responses revealed a variety of other aspects, beyond quantitative relations and exact number, which participants focused on in completing the tasks. These results suggest that exact number may be more easily perceived than quantitative relations. As well, these tasks were revealed to contain both mathematical and non-mathematical aspects which were interpreted by the participants as relevant. Study III investigated individual differences in SFOR 84 children, ages five to nine, from the US and is the first to report on the connection between SFOR and other mathematical abilities. The cross-sectional data revealed that there were individual differences in SFOR. Importantly, these differences were not entirely explained by the ability to solve the tasks using quantitative relations, suggesting that SFOR is partially independent from the ability to use quantitative relations. In other words, the lack of use of quantitative relations on the SFOR tasks was not solely due to participants being unable to solve the tasks using quantitative relations, but due to a lack of the spontaneous attention to the quantitative relations in the tasks. Furthermore, SFOR tendency was found to be related to arithmetic fluency among these participants. This is the first evidence to suggest that SFOR may be a partially distinct aspect of children’s existing mathematical competences. Study IV presented a follow-up study of the first graders who participated in Studies I and II, examining SFOR tendency as a predictor of their conceptual knowledge of fraction magnitudes in fourth grade. Results revealed that first graders’ SFOR tendency was a unique predictor of fraction conceptual knowledge in fourth grade, even after controlling for general mathematical skills. These results are the first to suggest that SFOR tendency may play a role in the development of rational number conceptual knowledge. Study V presents a longitudinal study of the development of 263 Finnish students’ rational number conceptual knowledge over a one year period. During this time participants completed a measure of conceptual knowledge of the magnitude representations and the density of rational numbers at three time points. First, a Latent Profile Analysis indicated that a four-class model, differentiating between those participants with high magnitude comparison and density knowledge, was the most appropriate. A Latent Transition Analysis reveal that few students display sustained conceptual change with density concepts, though conceptual change with magnitude representations is present in this group. Overall, this study indicated that there were severe deficiencies in conceptual knowledge of rational numbers, especially concepts of density. The longitudinal Study VI presented a synthesis of the previous studies in order to specifically detail the role of SFOR tendency in the development of rational number conceptual knowledge. Thus, the same participants from Study V completed a measure of SFOR, along with the rational number test, including a fourth time point. Results reveal that SFOR tendency was a predictor of rational number conceptual knowledge after two school years, even after taking into consideration prior rational number knowledge (through the use of residualized SFOR scores), arithmetic fluency, and non-verbal intelligence. Furthermore, those participants with higher-than-expected SFOR scores improved significantly more on magnitude representation and density concepts over the four time points. These results indicate that SFOR tendency is a strong predictor of rational number conceptual development in late primary school children. The results of the six studies reveal that within children’s existing mathematical competences there can be identified a spontaneous quantitative focusing tendency named spontaneous focusing on quantitative relations. Furthermore, this tendency is found to play a role in the development of rational number conceptual knowledge in primary school children. Results suggest that conceptual change with the magnitude representations and density of rational numbers is rare among this group of students. However, those children who are more likely to notice and use quantitative relations in situations that are not explicitly mathematical seem to have an advantage in the development of rational number conceptual knowledge. It may be that these students gain quantitative more and qualitatively better self-initiated deliberate practice with quantitative relations in everyday situations due to an increased SFOR tendency. This suggests that it may be important to promote this type of mathematical activity in teaching rational numbers. Furthermore, these results suggest that there may be a series of spontaneous quantitative focusing tendencies that have an impact on mathematical development throughout the learning trajectory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to study whether the use of biomethane as a transportation fuel is reasonable from climate change perspective. In order to identify potentials and challenges for the reduction of greenhouse gas (GHG) emissions, this dissertation focuses on GHG emission comparisons, on feasibility studies and on the effects of various calculation methodologies. The GHG emissions calculations are carried out by using life cycle assessment (LCA) methodologies. The aim of these LCA studies is to figure out the key parameters affecting the GHG emission saving potential of biomethane production and use and to give recommendations related to methodological choices. The feasibility studies are also carried out from the life cycle perspective by dividing the biomethane production chain for various operators along the life cycle of biomethane in order to recognize economic bottlenecks. Biomethane use in the transportation sector leads to GHG emission reductions compared to fossil transportation fuels in most cases. In addition, electricity and heat production from landfill gas, biogas or biomethane leads to GHG reductions as well. Electricity production for electric vehicles is also a potential route to direct biogas or biomethane energy to transportation sector. However, various factors along the life cycle of biomethane affect the GHG reduction potentials. Furthermore, the methodological selections have significant effects on the results. From economic perspective, there are factors related to different operators along the life cycle of biomethane, which are not encouraging biomethane use in the transportation sector. To minimize the greenhouse gas emissions from the life cycle of biomethane, waste feedstock should be preferred. In addition, energy consumption, methane leakages, digestate utilization and the current use of feedstock or biogas are also key factors. To increase the use of biomethane in the transportation sector, political steering is needed to improve the feasibility for the operators. From methodological perspective, it is important to recognize the aim of the life cycle assessment study. The life cycle assessment studies can be divided into two categories: 1.) To produce average GHG information of biomethane to evaluate the acceptability of biomethane use compared to fossil transportation fuels. 2.) To produce GHG information of biomethane related to actual decision-making situations. This helps to figure out the actual GHG emission changes in cases when feedstock, biogas or biomethane are already in other use. For example directing biogas from electricity production to transportation use does not necessarily lead to additional GHG emission reductions. The use of biomethane seems to have a lot of potential for the reduction of greenhouse gas emissions as a transportation fuel. However, there are various aspects related to production processes, to the current use of feedstock or biogas and to the feasibility that have to be taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present set of longitudinal studies was to explore 3-7-year-old children.s Spontaneous FOcusing on Numerosity (SFON) and its relation to early mathematical development. The specific goals were to capture in method and theory the distinct process by which children focus on numerosity as a part of their activities involving exact number recognition, and individual differences in this process that may be informative in the development of more complex number skills. Over the course of conducting the five studies, fifteen novel tasks were progressively developed for the SFON assessments. In the tasks, confounding effects of insufficient number recognition, verbal comprehension, other procedural skills as well as working memory capacity were aimed to be controlled. Furthermore, how children.s individual differences in SFON are related to their development of number sequence, subitizing-based enumeration, object counting and basic arithmetic skills was explored. The effect of social interaction on SFON was tested. Study I captured the first phase of the 3-year longitudinal study with 39 children. It was investigated whether there were differences in 3-year-old children.s tendency to focus on numerosity, and whether these differences were related to the children.s development of cardinality recognition skills from the age of 3 to 4 years. It was found that the two groups of children formed on the basis of their amount of SFON tendency at the age of 3 years differed in their development of recognising and producing small numbers. The children whose SFON tendency was very predominant developed faster in cardinality related skills from the age of 3 to 4 years than the children whose SFON tendency was not as predominant. Thus, children.s development in cardinality recognition skills is related to their SFON tendency. Studies II and III were conducted to investigate, firstly, children.s individual differences in SFON, and, secondly, whether children.s SFON is related to their counting development. Altogether nine tasks were designed for the assessments of spontaneous and guided focusing on numerosity. The longitudinal data of 39 children in Study II from the age of 3.5 to 6 years showed individual differences in SFON at the ages of 4, 5 and 6 years, as well as stability in children.s SFON across tasks used at different ages. The counting skills were assessed at the ages of 3.5, 5 and 6 years. Path analyses indicated a reciprocal tendency in the relationship between SFON and counting development. In Study III, these results on the individual differences in SFON tendency, the stability of SFON across different tasks and the relationship of SFON and mathematical skills were confirmed by a larger-scale cross-sectional study of 183 on average 6.5-year-old children (range 6;0-7;0 years). The significant amount of unique variance that SFON accounted for number sequence elaboration, object counting and basic arithmetic skills stayed statistically significant (partial correlations varying from .27 to .37) when the effects of non-verbal IQ and verbal comprehension were controlled. In addition, to confirm that the SFON tasks assess SFON tendency independently from enumeration skills, guided focusing tasks were used for children who had failed in SFON tasks. It was explored whether these children were able to proceed in similar tasks to SFON tasks once they were guided to focus on number. The results showed that these children.s poor performance in the SFON tasks was not caused by their deficiency in executing the tasks but on lacking focusing on numerosity. The longitudinal Study IV of 39 children aimed at increasing the knowledge of associations between children.s long-term SFON tendency, subitizing-based enumeration and verbal counting skills. Children were tested twice at the age of 4-5 years on their SFON, and once at the age of 5 on their subitizing-based enumeration, number sequence production, as well as on their skills for counting of objects. Results showed considerable stability in SFON tendency measured at different ages, and that there is a positive direct association between SFON and number sequence production. The association between SFON and object counting skills was significantly mediated by subitizing-based enumeration. These results indicate that the associations between the child.s SFON and sub-skills of verbal counting may differ on the basis of how significant a role understanding the cardinal meanings of number words plays in learning these skills. The specific goal of Study V was to investigate whether it is possible to enhance 3-year old children.s SFON tendency, and thus start children.s deliberate practice in early mathematical skills. Participants were 3-year-old children in Finnish day care. The SFON scores and cardinality-related skills of the experimental group of 17 children were compared to the corresponding results of the 17 children in the control group. The results show an experimental effect on SFON tendency and subsequent development in cardinality-related skills during the 6-month period from pretest to delayed posttest in the children with some initial SFON tendency in the experimental group. Social interaction has an effect on children.s SFON tendency. The results of the five studies assert that within a child.s existing mathematical competence, it is possible to distinguish a separate process, which refers to the child.s tendency to spontaneously focus on numerosity. Moreover, there are significant individual differences in children.s SFON at the age of 3-7 years. Moderate stability was found in this tendency across different tasks assessed both at the same and at different ages. Furthermore, SFON tendency is related to the development of early mathematical skills. Educational implications of the findings emphasise, first, the importance of regarding focusing on numerosity as a separate, essential process in the assessments of young children.s mathematical skills. Second, the substantial individual differences in SFON tendency during the childhood years suggest that uncovering and modeling this kind of mathematically meaningful perceiving of the surroundings and tasks could be an efficient tool for promoting young children.s mathematical development, and thus prevent later failures in learning mathematical skills. It is proposed to consider focusing on numerosity as one potential sub-process of activities involving exact number recognition in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.